
Listing of some AIX v. 6 (and v. 5) keypoints for Exam 223 (formerly known as 222).

Version: 3.8

Date: 28 October 2010

By: Albert van der Sel - Antapex Technologies B.V.

Contents:

Chapter 1. Some keypoints on LVM, Volume and Filesystem management.

Chapter 2. Some keypoints on Tape devices.

Chapter 3. Some keypoints on Memory.

Chapter 4. Some keypoints on the Object Data Manager - ODM.

Chapter 5. Some keypoints on the system p environment.

Chapter 6. Some keypoints on Power Virtualization and LPARS.

Chapter 7. Some keypoints in Managing Software.

Chapter 8. Some keypoints on WPARS.

Chapter 9. Some keypoints in booting a system.

Chapter 10. Some keypoints on Backup & Recovery.

Chapter 11. Some keypoints about logging and diagnosing.

Chapter 12. Some keypoints on user environment and security.

Chapter 13. Some keypoints on printing.

Chapter 14. Some keypoints on networking.

Chapter 1. Overview AIX volume and filesystem management.

1.1 Physical Volumes (disks) and Volume Group.

The above terms, all belong in the realm of a "Logical Volume Manager", or LVM.

In AIX, it's common to use a "Logical Volume Manager", or LVM, to cross the boundaries posed by

traditional disk management.
Traditionally, a filesystem was on a single disk or on a single partition of that disk (slice).

With a LVM, we can create "logical volumes" (=filesystems) which can span several disks.

The LVM has been a feature of the AIX operating system since version 3, and it is installed

automatically with the Operating System.

The "old" (standard non-LVM) way to create a filesystem on UNIX, say on a "older" Solaris version, say v. 8:

Although the following is not part of an AIX description at all, it is instructive to see how "old"

filesystem management was done in the past. Say, we wanted to create a filesystem on a new disk, in Solaris v.8:

(and suppose we don't have a LVM like Veritas)

Example:

Suppose we have this (disk) device "/dev/rdsk/c0t3d0s2".

This is the object "c0 - controller 0, t3 target 3, d0 lun 0, s2 - slice 2", where slice 2 means "the whole diskpartition".

Now we proceed as follows:

Format that disk:

format /dev/rdsk/c0t3d0s2

FORMAT MENU:

(we do our stuff here)

format>label

(we do our stuff here)

format>partition

(we do our stuff here)

When we are done with partioning, we can, for example, create an UFS filesystem like in the following command:

newfs /dev/rdsk/c0t3d0s0

Now, this example may not strike you as relevant at all, since this document is about AIX.

But hopefully you can see that we only deal with one disk at the time. Here, you can create a filesystem

only on a partition of a disk, and at most covering that whole disk.

- We do not have a way of creating a (large) filesystem that uses multiple disks.

- Also, it's not easy to implement a form of redundancy or protection, like mirroring the filesystem.

Because of the above two reasons, an LVM will almost always be used on modern Unix systems.

1.1.1. The concept of "Volume Group".

When you have installed AIX, you will always have (at least) one Volume Group, called "rootvg",
which contains all to the Operating System belonging filesystems.

A Volume Group (hereafter called "VG"), consists of one or more disks.

In AIX, a "disk" is called a Physical Volume (herafter called "PV").

The LVM makes it possible to create the VG from one or more (for example, three) physical disks,

as if we combine the disks into that Volume Group.

hdisk2

appsvg

after the VG is created, you can on each LV,

create Logical Volumes in that VG create a separate filesystem

hdisk3

using the crfs command

hdisk4

or create a filesystem directly using crfs (with implicitly an LV creation)

Fig. 1

LV1

LV2

LV3

At the moment, that you would enter the command to create the Volume Group (with a certain name like e.g. "appsvg"),

from the three physical disks, the following happens:
The physical disks get's "partitioned" into contiguous equal-sized units of space called "Physical Partitions" (PP),

Don’t think of partitions in the way "like disk partitions in the PC world". No, the "partitions" here,

are sort of "extends", a number of diskblocks, which number depends to the PP size you have specified.

32M, 128M etc...

You can control the size of the Physical Partition, by specifying it as a command option, like e.g. 4M, 16M,

From now on, we just have a "sea" of Physical partitions to deal with. They are "contained" in the Volume Group.

But how is that possible? Suppose the system reboots. How does the LVM "knows" which PV's (thus which disks) belong

to which VG's?

There are two answers:

1. All Volume Group and Physical Volume information, get's stored in the ODM. Especially on boot,

 the system then knows how to identify the VG's and corresponding PV's.
2. All Physical Volumes belonging to a VG, have a socalled "Volume Group Descriptor Area" (VGDA).

 The VGDA, located at the beginning of each physical volume, contains information that describes all

 the LV's and all the PV's that belong to the VG of which that PV is a member.

 The VGDA makes a VG selfdescribing. An AIX System can read the VGDA on a disk, and from that, can

 determine which PV's are part of this VG.

1.1.2 The "lspv" command:

Before we will create a VG, let's take a look on how we can list the PV's (the disks)

that are known to our system.

Ofcourse, we already have seen the "lsdev" command, which can show use which disks

are known to the ODM.

But in the context of LVM, the "lspv" (list physical volumes) command is much better.

Not only shows that command all disks that are known to the system, but also which of them already belong

to a VG, and which PV's are still "free" to be used.

Here are a few examples:

P550LP1:/root # lspv

hdisk0 00c723ba50b1f7f0 rootvg active

hdisk1 00c723ba6ee6c820 rootvg active

hdisk2 00c723ba6f1ec7c1 oravg active

hdisk3 00c723ba6f1f5319 dumpvg active

hdisk4 00c723ba6f1ec9b7 oravg active

hdisk5 00c723ba6f1f5507 dumpvg active

So in upper example, on the AIX system P550LP1, the PV's hdisk2 and hdisk4 are part of the VG called "oravg".

P550LP3:/root # lspv

hdisk0 00c723ba50b1f7bc rootvg active

hdisk1 00c723ba6ee6c730 rootvg active

hdisk2 00c723ba6f1ec8c3 none

hdisk3 00c723ba6f1f5512 none

So, on the AIX system P550LP3, the PV's hdisk0 and hdisk1 belong to the "rootvg" Volume Group.

But hdisk2 an hdisk3 are still not assigned to any VG, and might be used to create one.

Also, note the 16 digit unique identifier in the second column. This is called Physical Volume Identifier(PVID).

This ID uniquely identifies a disk on your system. Without it, a Physical Volume can not be used under LVM.

Note: actually the PVID is somewhat longer than you see with the lspv command.

We can view the complete PVID, and many other details, using the lsattr command, like in this example:

lsattr -El hdisk2

PCM PCM/friend/sddpcm PCM True

PR_key_value none Reserve Key True

algorithm load_balance Algorithm True

dist_err_pcnt 0 Distributed Error Percentage True

dist_tw_width 50 Distributed Error Sample Time True

hcheck_interval 20 Health Check Interval True

hcheck_mode nonactive Health Check Mode True

location Location Label True

lun_id 0x0 Logical Unit Number ID False

lun_reset_spt yes Support SCSI LUN reset True

max_transfer 0x40000 Maximum TRANSFER Size True

node_name 0x50050768010029c8 FC Node Name False

pvid 00cb5b9e66cc16470000000000000000 Physical volume identifier False

q_type simple Queuing TYPE True

qfull_dly 20 delay in seconds for SCSI TASK SET FULL True

queue_depth 20 Queue DEPTH True

reserve_policy no_reserve Reserve Policy True

rw_timeout 60 READ/WRITE time out value True

scbsy_dly 20 delay in seconds for SCSI BUSY True

scsi_id 0x611013 SCSI ID False

start_timeout 180 START unit time out value True

unique_id 33213600507680190014E30000000000001E204214503IBMfcp Device Unique Identification False

ww_name 0x50050768014029c8 FC World Wide Name False

So, the complete PVID is "padded" with 16 zeroes on the "right" side.

Note: if the lspv command does not show a PVID for a certain PV, let the system create one.

You can use the "chdev" command for that, like in this example:

chdev -l hdisk2 -a pv=yes

Note: the "P550LP1:/root #" string, is just the used "prompt" here. A prompt can be as simple as just "#" (for root),

or "$" or "%" (for a regular user), or it can be a more elaborate expression like for example containing the Hostname

(here P550LP1), and current path (here it is /root).

Other examples using "lspv" with some important flags:

The syntax is:

lspv (just use lspv, as we have seen above)

lspv [-L] [-P] [-l | -p | -M] [-n descriptorphysicalvolume] [-v volumegroupid] physicalvolume

lspv hdisk23 # shows summaries as well as id's

PHYSICAL VOLUME: hdisk23 VOLUME GROUP: oravg

PV IDENTIFIER: 00ccf45d564cfec0 VG IDENTIFIER 00ccf45d00004c0000000104564d2386

PV STATE: active

STALE PARTITIONS: 0 ALLOCATABLE: yes

PP SIZE: 256 megabyte(s) LOGICAL VOLUMES: 3

TOTAL PPs: 947 (242432 megabytes) VG DESCRIPTORS: 1

FREE PPs: 247 (63232 megabytes) HOT SPARE: no

USED PPs: 700 (179200 megabytes)

FREE DISTRIBUTION: 00..00..00..57..190

USED DISTRIBUTION: 190..189..189..132..00

lspv -p hdisk23 # shows free/used over the PP ranges and the distribution of the disk

hdisk23:

PP RANGE STATE REGION LV NAME TYPE MOUNT POINT

 1-22 used outer edge u01 jfs2 /u01

 23-190 used outer edge u02 jfs2 /u02

191-379 used outer middle u01 jfs2 /u01

380-568 used center u01 jfs2 /u01

569-600 used inner middle u02 jfs2 /u02

601-700 used inner middle u03 jfs2 /u03

701-757 free inner middle

758-947 free inner edge

lspv -l hdisk0 # shows all LV's and LP/PP's and mountpoints on that disk

hd5 1 1 01..00..00..00..00 N/A

prjlv 256 256 108..44..38..50..16 /prj

hd6 59 59 00..59..00..00..00 N/A

fwdump 5 5 00..05..00..00..00 /var/adm/ras/platform

hd8 1 1 00..00..01..00..00 N/A

hd4 26 26 00..00..02..24..00 /

hd2 45 45 00..00..37..08..00 /usr

hd9var 10 10 00..00..02..08..00 /var

hd3 22 22 00..00..04..10..08 /tmp

hd1 8 8 00..00..08..00..00 /home

hd10opt 24 24 00..00..16..08..00 /opt

1.1.3 The "mkvg" command: Creating a Volume Group:

Let's create a VG called "appsvg" on the system "P550LP3" of the former section.

We know that on this system, hdisk2 and hdisk3 are not assigned to a VG, so, they can be used to create "appsvg".

To create a VG, you use the "mkvg" (make volume group) command.

In it's simplest form, the command is:

mkvg -y <name_of_volume_group> -s <partition_size> <list_of_hard_disks>

So, let's us try the following on P550LP3, using both hdisk2 and hdisk3:

P550LP3:/root # mkvg -y appsvg -s 64 hdisk2 hdisk3

This command creates the "appsvg" VG, using hdisk2 and hdisk3. We do not have to use both hdisk2 and hdisk3.

Typically, you would use multiple disks, if you want to create a large filesystem that spans multiple disks,

or if you want to implement redundancy by using mirroring.

Note:

Yes, creating a VG is only part of the process. Once a VG is created, you should create one or more "Logical Volumes",

on which you can create filesystems. So, after creating VG's, you are only halfway there.

In the above example, I used a Physical Partition size of 64 MB.

You can use a "power of 2" as a Physical Partition (PP) size, that is for example, 1,2,4,8,..64,128,256.. MB

If you leave out the "-s <size>, the system will determine a proper PP size (and -t factor: explained later).

Is the PP size choosen important? Yes, there are two considerations:

- It might be a factor in performance considerations.

If you just have a few local disks, I would say it does not matter too much. For example, you could choose 64MB or 128MB.

But suppose you have a local expensive storage system, say with 128 disks, there are recommendations on

how you best choose a PP size for a certain purpose (e.g. as Storage for a Database, using some RAID implementation).

So, let's say that when you use the "fancy" storage systems, advice from Storage experts or from the manufacturer

is recommended. It's just part of your planning and implementation process.

- It can impose contraints on how many disks a VG can contain.

Later more on this.

Here are some other examples:

P550LP3:/root # mkvg -y appsvg -s 64 hdisk2 # here we use only 1 PV

P550LP3:/root # mkvg -y datavg -s 64 hdisk3 # here we use only 1 PV

P570LP14:/root # mkvg -y datavg -s 128 hdisk3 hdisk4 hdisk5 # here we use 3 PV's

For easy reference, here is the full mkvg syntax: (you don't need to memorize all options)

mkvg [-B] [-t factor] [-S [-v logicalvolumes] [-P partitions]] [-C] [-G] [-f] [-i] [-I]

[-c] [-x] [-L ltgsize] [-n]

[-s size] [-V majornumber] [-y volumegroup] [-M y|s] [-p mirrorpool] physicalvolume_list

1.1.4 The "mkvg4vp" command: Creating a "vpath" Volume Group:

In some Storage configurations, "SDD" is used. SDD means "Storage Multipath Subsystem Device Driver".

Mainly, SDD provides multipath (indeed thus "multiple paths") support for a host AIX system

to attach to a storage device (for example, through multiple fibercards).

The Physical Volumes we have seen so far, were called "hdiskn", like hdisk0, hdisk1 etc..

But in the "SDD world", the disks are named "vpath1", "vpath2" etc..

In this case, an optimised "mkvg" command should be used. This command is "mkvg4vp", as short for "mkvg for vpath".

Here are a few examples:

P570LP14:/root # mkvg4vp -B -t 32 -s 4 -y DB01_RECOV_VG1 vpath4 vpath10

Here, the VG is called "DB01_RECOV_VG1", and as you can see, two extra flags were used, namely the "-B" and "-t" flags.

Don't worry about those extra flags right now.

The mkvg4vp is optimized for using advanced flags in creating a VG. For a simple VG, the command "mkvg" can be

used as well. But for advanced options like an 'enhanced concurrent VG', we should use the mkvg4vp command.

1.1.5 Listing VG's:

Listing Volume Groups:

Let's see how we can obtain a listing of the Volume Groups that exists on your system.
It probably won't surprise you; the command is "lsvg" (list volume group)

So, here is an example:

P550LP3:/home/alberts # lsvg

rootvg

appsvg

Indeed, we see our VG's listed, including the new "appsvg" VG, that we created in the former section.

Listing the File systems (or Logical Volumes) on a Volume Group:

Although we still need to introduce the concept of "Logical Volume", and the filesystem you can create

on a Logical Volume, at this time I already want to show the use of the "-l" flag, by which

you can see which LV's (and which corresponding filesystems) reside on the VG.

lsvg -l <Volume_Group_Name>

lsvg -l datavg

datavg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

loglv01 jfs2log 1 1 1 open/syncd N/A

lv02 jfs2 240 240 1 open/syncd /data

lv03 jfs2 384 384 1 open/syncd /dump

lv07 jfs2 256 256 1 open/syncd /was6

So, in this example, the VG "datavg" contains 3 filesystems: /data, /dump, and /was6.

Also, observe that a "journaled log" exists in any VG. That is because the native AIX filesystems are JFS or JFS2,

which are "journaled" filesystemtypes (meaning that a write-ahead log exists, to log metadata changes).

Listing Technical specs (like the VGID) from a Volume Group:

Use the "lsvg <Volume_Group_Name>" to retrieve technical specs from a specified VG, like so:

Notice that you can find the VGID (Volume Group ID) with this command.

lsvg oravg

VOLUME GROUP: oravg VG IDENTIFIER: 00ccf45d00004c0000000104564d2386

VG STATE: active PP SIZE: 256 megabyte(s)

VG PERMISSION: read/write TOTAL PPs: 1894 (484864 megabytes)

MAX LVs: 256 FREE PPs: 492 (125952 megabytes)

LVs: 4 USED PPs: 1402 (358912 megabytes)

OPEN LVs: 4 QUORUM: 2

TOTAL PVs: 2 VG DESCRIPTORS: 3

STALE PVs: 0 STALE PPs: 0

ACTIVE PVs: 2 AUTO ON: yes

MAX PPs per PV: 1016 MAX PVs: 32

LTG size: 128 kilobyte(s) AUTO SYNC: no

HOT SPARE: no BB POLICY: relocatable

Listing a Voluming Group, showing disks, Total free/used PP's, and distribution:

lsvg -p informixvg

informixvg

PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION

hdisk3 active 542 462 109..28..108..108..109

hdisk4 active 542 447 109..13..108..108..109

1.1.6 Adding and removing disks to and from a Volume Group:

You can add a PV (a disk) to an existing VG. In this case, the PV inherits the properties

of the VG, like for example the PP size. Also, a new disk obviously get's an VGDA.

You can also remove a PV from an existing VG. If you have removed (or reduced) the last PV,

the VG cease to exist.

Adding a PV (disk) to a Volume Group: extendvg

It is easy to add a disk, or a number of disks, to a VG.

Simply use the "extendvg" command:

extendvg <Volume_Group_Name> <List_of_PV>

Examples:

extendvg newvg hdisk23

extendvg appsvg hdisk5 hdisk8

Removing a PV (disk) from a Volume Group: reducevg

It's also easy to remove a disk from a VG, although here you must be carefull to select the right PV.

WARNING: if the disk contains LV's (and thus filesystems), or is part of a LV spanning multiple disks,

you better KNOW EXACTLY WHAT YOU ARE ABOUT TO DO.

To remove a PV from a VG, use:

reducevg <Volume_Group_name> <PV_name>

Examples:

reducevg myvg hdisk23

If the VG contains filesystems, use the -d flag, like in:

reducevg -d myvg hdisk23

Important: if you only want to remove a disk from a VG, and this disk contains data, and the other disks in the VG

have still space to hold that data, then use the migratepv command, before deleting the disk from the VG.

Suppose VG datavg consists of hdisk2, hdisk3 and hdisk4.

Now suppose that you want to remove hdisk4 from datavg, while preserving the data by migrating

that data to the other disks. Then use the "migratepv" command like in:

migratepv hdisk4 hdisk2 hdisk3

When you delete the last disk from the VG, the VG is also removed.

Varyon and Varyoff a VG:

You can "shutdown" a VG, so that it is inactive and the filesystems on that VG cannot be accessed by users.
For this, you can use the "varyoffvg" command.

The other way around, you can "open" a VG that was "closed" by using the "varyonvg" command.

All its resident filesystems are mounted by default if they have the flag "mount=true" in

the "/etc/filesystems" file (more on that later).

Examples:

varyoffvg appsvg

varyonvg appsvg

Only "rootvg" (the VG containing the OS), is a bit hard to vary off.

1.2 Managing Logical Volumes and Filesystems on a VG:

1.2.1. Creating and Managing a Logical Volume:

- Creating a Logical Volume:

We know how to create VG's an how to manage them. Next, we want to create filesystems.
In AIX (and most other unixes with LVM's), you often create a "Logical Volume" first, before

you create a filesystem on that Logical Volume (LV).

Note: as you will see later, the "crfs" command (used to create a filesystem), does not perse

need a LV to exist beforehand. You can just specify a Volume Group (along with other options), and AIX

will create a filesystem in that Volume Group (and creates as system generated Logical Volume in the process).

Because it's important to know how to handle LV's, we will review how to create a filesystem, using an

existing LV, first. That's why we need to know how to create and handle a LV.

A Volume Group itself, resembles nothing else than a "container" with Physical Partitions (PP's).

With a LV, you create a "structure" inside that container, with certain properties like

how many copies (most often 2) of a PP you want, for safety (redundancy).
So, the LV uses an abstract Partition, called "Logical Partition" (LP), which is actually equivalent

to a Physical Partition and its optionally redundant copies (of that Physical Partition).

Since a VG is created (usually) from multiple disks, a Logical Partition, could be equivalent

to a PP on one disk, and a PP on another disk. So, in this example, there are 2 PP's, which are mirrored copies

and which are represented by one Logical Partition.

This way, you have implemented mirroring, on a PP level.

It is not required to have multiple copies of PP's. If a Volume Group consists of only one disk,

it is useless to implement PP mirorring, because you cannot implement safety (real redundancy) here.

So,

A LP maps to (at least) one PP, and is actually the smallest unit of allocatable space in creating a LV.

But, for safety reasons, usually a LP is mapped to 2 PP's (which are copies on different disks).

In a former section, we created the "appsvg" Volume Group. The PP size choosen was 64M.

Below is the command that we used:

P550LP3:/root # mkvg -y appsvg -s 64 hdisk2 hdisk3

In this case, we used 2 disks, so here we are able to create a Logical Volume, where each LP

has 2 equivalent PP's, where one PP reside on hdisk2 and a copy of that PP reside on hdisk3.

In it's most simple form, the command to create a LV looks like

mklv -y <Logical_Volume_Name> -c <No_of_Copies_of_PPs> <Volume_Group_Name> <No_of_LPs>

So, here is a typical command to create a Logical Volume. Here the LV is named "lv05":

mklv -y lv05 -c 2 appsvg 100

- The command to create a LV is "mklv" (make logical volume).

- With "-y" you can specify the name of your LV.

- With "-c" you can specify how many PP copies you want for each LP. In this case, we have choosen

 for 2 copies, which is about right since we have 2 disks in the Volume Group.

 So, here we have a "mirrored LV", which actually means we have 2 mirrored PP's per LP.

- In the command, you need to specify in which VG you want to create the new LV. Here it is "appsvg".

- Also, you need to size your LV, and in the above example we want 100 mirrored PP's.

Now, what about the size of our new LV in the above example.

The lv05 Logical Volume, has a size of 100 x 64MB = 6400 MB.

But it's mirrored, so, there are 100 PP's on hdisk2 and 100 PP's on hdisk3.

This is the way it goes with mirrored stuff. Although 200 PP's are used, thus 12800 MB is in use,

each PP is mirrored, so in effect you only have 100 PP's to store data on.

Here are a few other examples:

mklv -c 3 vg03 9 # since we did not provide a LV name, the system will generate one.

mklv -y lv02 vg03 10 # here the default of 1 copy is implemented. So there is only one PP per LP.

Important: whether you should implement mirroring (or similar) by using the '-c' flag, just depends

on the Storage where you are going to create the LV on. Suppose you have a LUN from a SAN, and that

storage is on RAID 5 (or so) anyway, then you do not need to mirror. So, it just depends on the Storage that

is available to your system. In larger systems, it's very common that the sysadmin and the storage admin,

will both contribute to find the best options.

On smaller systems, using local disks, or using a local diskcabinet, you probably do want to use mirroring.

For easy reference, here is the full mklv syntax: (you don't need to memorize all options)

mklv [-a position] [-b badblocks] [-c copies] [-C stripewidth] [-d schedule] [-e range] [-i] [-L label]

 [-m mapfile] [-o y / n] [-r relocate] [-s strict] [-t type] [-T O] [-u upperbound] [-v verify]

[-w mirrorwriteconsistency] [-x maximum] [-y newlogicalvolume | -Y prefix] [-S stripsize] [-U userid]

[-G groupid] [-P modes] [-p copyn=mirrorpool] volumegroup number [physicalvolume ...]

- Removing a Logical Volume:

To delete a LV, use the "rmlv" command, like in the following example:

mklv -y lv05 -c 2 appsvg 100

Now, let's delete lv05:

rmlv lv05

Warning, all data on logical volume newlv will be destroyed.

rmlv: Do you wish to continue? y(es) n(o) y

#

- Extending a Logical Volume:

If a VG still has free PP's, you can extend a LV with a number of LP's.

For example:

extendlv lv05 20

If the LV used mirorred PP's, for example, the common number of 2 mirrored PP's per LP,

then 20+20 PP's are allocated.

1.2.2. Creating a File System:

- A few remarks on JFS and JFS2:

There are two "native" r/w filesystem types available in AIX: jfs and jfs2.

JFS is short for: "Journaled File System".

JFS was already available since AIX v3.1, and JFS2 was introduced with AIX v 5.1.

It's reasonably fair to say that JFS is seen mainly on systems using AIX up to v. 5.2.

Gradually, JFS2 took over, and it's "reasonably fair" to say that most systems since AIX 5.2 uses JFS2.

JFS2 is also called "Enhanced Journaled File System".

But AIX is not limited to those two filesytems, because if you want/must/need, you might use

another LVM and use a fileystem type like for example the widely used VxFS.

Both types of filesystems are "journaled filesystems", meaning that a writeahead logging "log" exists,

before metadata changes are actually applied to the data on the filesystems, enhancing recoverability after a crash.

Here, metadata is all info about a file, except the data itself.

JFS2 is optimized for use at a 64bit kernel.

JFS2 is the default filesystem in AIX 6.1

JFS and JFS2 filesystem types, can both be used at the same time in all versions as of v5.1.

With JFS2, it's not likely that you will run out of "inodes" of a filesystem, because they are added as needed.

Contrary, if you created a JFS filesystem of a certain size, the number of inodes is fixed.

There are many differences between JFS and JFS2, like maximum filesystem size, maximum file size etc..

JFS JFS2

Max Filesystem size 1 TB 32 TB (theoretically much larger)

Max File size: 63.876 GB (about 64GB) 16 TB (theoretically much larger)

inodes: fixed, at fs creation dynamic

Directory structure: B tree linear

Compression: Supported Not supported

In general, you might say that JFS2 should be preferred over JFS (there still are quite a few exceptions though).

Important is the fact that filesystem compression is supported on JFS, but not on JFS2 !

Really ! This fact has been spotted as an exam question.

(Here we do not mean the compression by tools as "compress", "gzip" etc.., but compression as an internal

function of the filesystem, that is, how "fragments" are stored in diskblocks).

- Creating filesystems:

Usually filesystems get's created by using:

1. Smitty It's a reasonable friendly menu system (ascii, non graphical) by which you can

do almost all administration like adding useraccounts, configure networking, creating fileystems etc..

2. The "crfs" command (create filesystem)

3. The "mkfs" command (make filesystem)

For the commands, the syntaxes are:

crfs:

crfs -v VfsType { -g VolumeGroup | -d Device } [-l LogPartitions] -m MountPoint [-n NodeName]

[-u MountGroup] [-A { yes | no }] [-p {ro | rw }] [-a Attribute=Value ...] [-t { yes | no }]

Or in the most simple form:

crfs -v <Type_Of_Filesystem (jfs/jfs2)> [-g <Volumegroup> -a size=] or [-d <Logical_Volume>] -m <The_Mountpoint_YouWant>

Do you notice that you can specify either a Volume Group to create the filesystem in,

or a Logical Volume to create the filesystem on (which exists in a VG).

So, you do not perse create a LV beforehand, but generally speaking it's better.

If you use the "-g <Volumegroup>", then AIX will create a LV for you, because a Filesystem is always related to a LV.

Examples:

crfs -v jfs -d lv10 -m /data -a bf=true

In this example, the LV "lv10" already existed. We do not need to specify a size, because that was already

determined when we created the LV.

The jfs filesystem get's created, and afterwards it can be (per default) mounted as "/data".

Ofcourse, you can mount a filesystem on any mountpoint of your choice, but the "-m" flag will create
entries in the "/etc/filesystems" file, which is the default repository of filesystem information on AIX.

crfs -v jfs2 -g rootvg -a size=381M -m /tftpboot -A yes -t rw

Note the difference in "-g VolumeGroup" or "-d LogicalVolume". In case of a LV, you do not need to specify the size,

because the LV is already of a certain size.

Note: the "/etc/filesystems" file, has the same function as "/etc/fstab"

that can be found on many other unixes.

mkfs:

mkfs [-b Boot] [-l Label] [-i i-Nodes] [-o Options] [-p Prototype] [-s Size] [-v VolumeLabel] [-V VfsName] Device

Or in it's most simple form:

mkfs -V <Type_of_Filesystem> -o options <Device>

Here are some important differences with the "crfs" command. With mkfs, you create a filesystem
on a device like "/dev/hd3" (a disk) or "/dev/lv05" (a Logical Volume expressed as a device name)

Also, note that there is no flag to specify a mountpoint beforehand.

Example:

mkfs -V jfs2 /dev/lv01 # this decive is a LV

Why two commands?

On most other unixes, "mkfs" is the rough variant. Most of the time, a more easier interface is available

like the "newfs" command (which just uses the mkfs command below the surface).

This is not exactly the same in AIX. Both commands will generally do the same, but mkfs is more

equipped in doing special operations. Usually, sysdamins will use the "crfs" command.

Both commands can be used to create filesystems in any normal operation.

But in AIX, using "mkfs" a device like a LV, needs to exist.

And with "crfs", if you just specify the Volume Group, a device (a LV) will be created in the process.

1.2.3. The "/etc/filesystems" file:

Almost all unixes have a sort of repository (just an ascii file) which states which filesystems are present, and

which should be mounted at boottime, as well as some other "options" like if "fsck" should

check the filesystem etc..

In AIX, this is the "filesystems" file, which can be found in "/etc".

Here is an example of a part of such a file:

/data:

 dev = /dev/lv03

 vfs = jfs

 log = /dev/loglv01

 mount = true

 options = rw

 account = false

/apps:

 dev = /dev/lv04

 vfs = jfs

 log = /dev/loglv00

 mount = true

 options = rw

 account = false

etc..

This indeed a bit different format, compared to the /etc/fstab file found in many other unixes.

The advantage is, is that this one is easily editable (with vi).

1.2.4. Change the size of a filesystem using chfs:

The "chfs" command, changes attributes of a filesystem.

Especially it is usefull in increasing or decreasing the size of a filesystem.

Ofcourse, if a filesystem is increased, the associated LV will be adjusted as well.

The "-a" flag specifies the attribute you want to adjust.

Examples:

chfs -a size=+128M /opt

chfs -a size=+20G /data/udb

The + is interpreted as a request to increase the file system size by the specified amount.

As of AIX v5.3, you can shrink a JFS2 filesystems as well, using '-'.

1.2.5. The "lsfs" command:

Displays the characteristics of file systems.

(If you want to view the contents, just use the normal "ls" or "ls -al" command).

Syntax

lsfs [-q] [-c | -l] [-a | -v VfsType | -u MountGroup| [FileSystem...]]

To show all file systems in the /etc/filesystems file, enter:

lsfs

To show all jfs filesystems, enter:

lsfs -v jfs

-q flag:

The lsfs command displays additional Journaled File System (JFS) or Enhanced Journaled File System (JFS2)

characteristics if the -q flag is specified.

lsfs -q /opt

Name Nodename Mount Pt VFS Size Options Auto Accounting

/dev/hd10opt -- /opt jfs 4128768 -- yes no

(lv size: 4128768, fs size: 4128768, frag size: 512, nbpi: 4096, compress: no, bf: true, ag: 8)

1.3 Copy a LV with cplv:

The cplv command:

Since a LV corresponds to a filesystem (if one is created on that LV),

you can copy a LV (or thus a Filesystem) from one VG to another VG (or in the same VG).

Syntax:

-- Copying to a new LV called "NeWLogicalVolume"

cplv -v VolumeGroup -y NewLogicalVolume SourceLogicalVolume

-- Copying to an already existing LV named "DestinationLogicalVolume"

cplv -e DestinationLogicalVolume SourceLogicalVolume

With the "-e" flag, you can specify that the DestinationLogicalVolume already exists (with that name).

If you specify the -v VGName, then the new LV will be created in VGName.

Otherwise, the new LV will be created in the same VG.

If you specify -y NewLogicalVolume, the new LV takes that name, otherwise the system will generate one.

cplv will do an exact PP copy from the source to the destination.

It's an alternative to copy filesystems with shell commands.

Examples:

cplv lv09 # will create a new LV, as a copy of lv09, with a system generated name, in the same VG.

cplv -v vg2 lv09 # will create a copy of lv09 in Volume Group vg2.

The next command will create a new LV called "lvnew" as a copy of "lvold" in VG "vgnew":

cplv -v vgnew -y lvnew lvold # Take notice of this command !

An example of a move of a "live" filesystem:

Suppose we have the following situation:

free PV hdisk10

free PV hdisk11

Right now, we have a VG called "vg1", containing the LV called "lv05".

On lv05, the filesystem "/data" was created. Suppose that by now "/data" contains 20 GB data of users.

Suppose furher that we need to move "/data" to a new Volume Group "vg2" (suppose vg1 get's too full).

- Step 1: Create the Volume Group vg2

mkvg -y vg2 -s 128 hdisk10 hdisk11

- Step 2: Create a new LV on vg2:

mklv -y lvnew -c 2 vg2 200 # the new LV is called lvnew with a size of 200 x 128= 25.6 GB

VG1

lv05

/data

Actually, we are not required to create a new LV. The cplv command can create one for us.

But, since we want mirroring in effect in the new LV (and possibly other options as well),

we create one ourselves.

Step 3: umount the "/data" filesystem, so that it is closed and no user access is possible.

umount /data

Step 4: optionally rename the filesystem.

chfs -m /data_old /data

You are not required to do this. But in this case, we want the new filesystem to use the former mountpoint

of "/data". So, with the "chfs" command we change the mountpoint from "/data" to "/data_old".

Step 5. Now cplv "lv05" to "lvnew":

cplv -e lvnew lv05 # we use the -e flag, because our new LV already exists.

Note:

If you see this error:

0516-746 cplv: Destination logical volume must have type set to copy.

Then use the following command:

chlv -t copy lvnew

Now it's copying all the information of the PP's of lv05 to lvnew.

In this example, lv05 contained 20 GB worth of data, so it probably will take some time.

After the copying is done, we need to do some housekeeping:

We need to make sure that the "/data" filesystem is associated to the new LV "lvnew".

chfs -a dev=/dev/lvnew /data_old

chfs -m /data /data_old

mount /data

We are done copying.

After you are sure everyting is OK on the new copy, we can optionally remove lv05:

rmlv lv05 # in order to free space in vg1.

Or, what is similar to the rmlv command:

VG1

lv05

/data

VG2

lvnew

/data

rmfs /dev/lv01

Warning, all data contained on logical volume lv05 will be destroyed.

rmlv: Do you wish to continue? y(es) n(o)? y

rmlv: Logical volume lv05 is removed.

Alternative for the 'cplv" command:

As an alternative to the cplv command, if you want to copy filesystems,

from the 'one location' 'to another location', you can consider using cpio.

This command will be discussed in another chapter about backup & recovery.
But suppose you have a source dir "/data/dira", and you want to copy all files and subdirectories,

including the filemodes (permissions) and ownership, to, say "/data2/dirb", then use cpio

as in the following example:

cd /data/dira

find . | cpio -pdvm /data2/dirb

"/data/dirb" will be an exact copy of "/data/dira", including all subdirectories, permissions, etc..

Don't you agree that the above command is really great?

1.4 Import and Export of a Volume Group.

This short section deals with the "export" (using exportvg) and "import" (using importvg)

of a volume group.

Any PV in a VG has at least one copy of the VGDA (and other special area's). This makes a VG "selfdescribing".

This also makes a VG, in principle, transportable.

But exportvg and importvg are also used to solve incorrect ODM entries.

Let's take a look at this very simple example:

In the following example, the VG is called "datavg" consisting of the PV hdisk5.

Unmount all filesystems in that VG first, otherwise you cannot varyoff the VG.

Then varyoff the VG.

varyoffvg datavg

Now remove the complete information of that VG from ODM. The VGDA and LVCB

on the actual disks are NOT touched by the exportvg command.

exportvg datavg

Now import the VG and create new ODM objects associated with that VG:

importvg -y datavg hdisk5

You only need to specify one intact PV of the VG in the above command. Any disk in the VG

will have a VGDA which contains all neccessary information.

The importvg command reads the VGDA and LVCB on that disk and creates completely new ODM entries.

1.5 Some other important facts:

1.5.1. File systems that are located in ROOTVG:

Let's see what LV's and filesystems are stored on the ROOTVG:

Example: listing of logical volumes on rootvg:

lsvg -l rootvg

LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT

hd5 boot 1 1 1 closed/syncd N/A

hd6 paging 24 24 1 open/syncd N/A

hd8 jfslog 1 1 1 open/syncd N/A

hd4 jfs 4 4 1 open/synced /

hd2 jfs 76 76 1 open/synced /usr

hd9var jfs 4 4 1 open/synced /var

hd3 jfs 6 6 1 open/synced /tmp

paging00 paging 20 20 1 open/synced N/A

If you forgot what "lsvg -l <VG_Name> does for you, then review section 1.1.5.

Memorize the following table with the default LV's and mountpoints:

LV name mountpoint

hd4 /

hd5 boot logical volume

hd6 paging

hd2 /usr

hd3 /tmp

hd1 /home

hd9var /var

hd10opt /opt

hd8 jsflog

hd11admin /admin contains /admin/tmp on AIX 6.1

1.5.2. Types of Volume Groups:

Type: Version Max Physical Volumes Max Logical Volumes

Normal VG AIX5 32 256

Big VG AIX5 128 512

Scalable VG as of AIX5.3 1024 4096

1.6 Some pointers on commands in LVM troubleshooting:

In this section, we will show some short examples in using a few special commands, used with LVM problems.

ATTENTION: this section is NOT about troubleshooting LVM problems.
I just want you to know the main purpose of some of those commands, and that's really all.

Ofcourse, if, in reality, you suspect serious problems in LVM, you really need much better information

than what you can find in this section. Remember, this document is only a supporting document on Exam 223.

But as the last chapter of this document we will review some troubleshooting and diagnosing in general,

and review a few cases in LVM troubleshooting

All disks, or PV's, that are member of a VG, have a couple of special area's at the beginning of the disk.

We already have discussed the VGDA in a former section.

Here is a short description of those special area's:

- 1. VOLUME GROUP DESCRIPTOR AREA, VGDA

Global to the VG:

The VGDA, located at the beginning of each physical volume, contains information that describes all

the LV's and all the PV's that belong to the VG of which that PV is a member.

The VGDA makes a VG selfdescribing. An AIX System can read the VGDA on a disk, and from that, can

determine what PV's and LV's are part of this VG.

There are one or two copies per disk.

- 2. VOLUME GROUP STATUS AREA, VGSA

The VGSA contains state information about physical partitions and physical volumes.

For example, the VGSA knows if one PV in a VG is unavailable. For example, you might

have shut down a PV with the "chpv" command.

Each PV has at least one VGDA/VGSA. The number of VGDA's contained on a single disk

varies according to the number of disks in the VG.

- 3. LOGICAL VOLUME CONTROL BLOCK, LVCB

Contains LV attributes (like number of copies).

The LVCB is located at the start of every LV. It contains information about the logical volume.

You can however, use the mklv command with the -T option, to request that the LVCB will not

be stored in the beginning of the LV.

With Scalable VG's, LVCM info is no longer stored in the first user block of any LV.

All relevant LVCM info is kept in the VGDA.

With the "getlvcb" command, you can see those attributes in a good readable format.

Let's spend a few words (but not enough words !) on the following commands (so that you alread know about them):

lqueryvg

lquerypv

ldeletepv

chpv

synclvodm

getlvcb

The lqueryvg command:

The lqueryvg command reads the VGDA from a specified disk in a VG.

Most important Flags:

 -p: which PV

 -A: show all available information

 -t: show descriptive tags

Example:

lqueryvg -Atp hdisk0

Max LVs: 256

PP Size: 25

Free PPs: 468

LV count: 20

PV count: 2

Total VGDAs: 3

Conc Allowed: 0

MAX PPs per PV 1016

MAX PVs: 32

Conc Autovaryo 0

Varied on Conc 0

Logical: 00c665ed00004c0000000112b7408848.1 hd5 1

 00c665ed00004c0000000112b7408848.2 hd6 1

 00c665ed00004c0000000112b7408848.3 hd8 1

 00c665ed00004c0000000112b7408848.4 hd4 1

 00c665ed00004c0000000112b7408848.5 hd2 1

 00c665ed00004c0000000112b7408848.6 hd9var 1

 00c665ed00004c0000000112b7408848.7 hd3 1

 00c665ed00004c0000000112b7408848.8 hd1 1

 00c665ed00004c0000000112b7408848.9 hd10opt 1

 00c665ed00004c0000000112b7408848.10 hd7 1

etc..

(many rows omitted)

The lquerypv command:

Used to get a dump from the special area's on a PV.

lquerypv -h /dev/PVname | -p PVid -g VGid | -N PVname offset length

The below command shows the PVID that is stored on hdisk5, which can be found on offset 80

lquerypv -h /dev/hdisk5 80 10

00000080 00001155 583CD4B0 00000000 00000000 |...UX<..........|

The ldeletepv command:

To remove a "phantom disk" from the ODM, use reducevg with the PVID instead of the disk name.

But sometimes even that does not work.

To clean ODM, you might consider using the ldeletepv command:

ldeletepv -g VGID -p PVID

When you are at the stage that you consider using the ldeletepv command, surely you have seen

already some error message, stating the involved VGID and PVID.

The chpv command:

The chpv command changes the state of the physical volume in a volume group.

Just like the examples above, it's mainly used in troubleshooting LVM problems, and I just

want you to know a little about this command.

Examples

To close physical volume hdisk03, so that all IO will prevented,enter:

chpv -v r hdisk03

To open physical volume hdisk03 again for all IO, enter:

chpv -v a hdisk03

Any PV has a bootrecord, and in some cases it needs to be cleared.

So, in some troubleshooting situations, if you need to clear the boot record of for example hdisk3, enter:

chpv -c hdisk3

The synclvodm command:

In rare occasions, the LVM information in the ODM, is not in sync anymore with the VGDA's

in a Volume Group. It is possible to correct that with the "synclvodm" command.

There are a number of indicators that shows that there are indeed inconsistencies, like e.g.

0516-306 getlvodm: Unable to find lv09 in the Device

Configuration Database.

So here AIX complains that lv09 is not found in ODM. Maybe, while a sysadmin was trying to create it,

accidently pressed Ctrl-C (or something), while he/she thought he/she was busy in another ssh session.

The synclvodm command, will read the VGDA from the VG specified and updates the ODM database.

This command is typically used to fix inconsistencies in the ODM database.

Suppose in the above errormessage, you know that the VG involved is "appsvg", you mighty try

this:

synclvodm -v appsvg

The getlvcb command:

As you may have read above, the LVCB stores attributes of a LV.

The getlvcb command reads the LVCB of a specified LV, and presents it in a nice formatted form.

getlvcb -AT lv05

 AIX LVCB

 intrapolicy = m

 copies = 2

 interpolicy = m

 lvid = 00c8beec00005c00000001049820e38f.17

 lvname = lv05

 machine id = 6BCCC4C00

 number lps = 32

 relocatable = y

 strict = y

 stripe width = 0

 stripe size in exponent = 0

 type = jfs2

etc..

Using "exportvg" and "importvg" in case of ODM problems:

From section 4.4, you know that the exportvg command, does not touch the VGDA on
the Physical Volumes. It only clears the ODM with respect to this particular VG.

Indeed, the command was meant "to export" a VG to "somewhere", so the ODM must be cleared.

So if you export, and thereafter import a VG, you essentially "renew" the ODM information.

This is so, because the "importvg" command, reads the VGDA (of a specified disk)

and updates the ODM accordingly.

Example:

Unmount all filesystems in that VG first, otherwise you cannot varyoff the VG.

Then varyoff the VG.

varyoffvg myvg

Now remove the complete information of that VG from ODM. The VGDA and LVCB

on the actual disks are NOT touched by the exportvg command.

exportvg myvg

Next, we import the VG with the importvg command. You can use any PV from that VG,

because they all have at least one VGDA

importvg -y myvg hdisk3

1.7 Some other commands and concepts related to LVM and fileystem management:

In this chapter, we have seen a number of important LVM related commands, like:

What we have seen sofar:

listing objects (PV, VG, LV): lspv

lsvg

lslv

creating objects (VG, LV): mkvg

mklv

creating filesystems: crfs

mkfs

listing and changing filesystems: lsfs

chfs

removing a LV (and filesystem) rmlv

extending a LV (adding PP's) extendlv

copy a logical volume cplv

remove a disk from a VG: reducevg

add a disk to a VG: extendvg

exporting and importing a VG: exportvg

importvg

And, we have seen some commands that can help in troubleshooting LVM problems,

or retreiving special information, like "lqueryvg".

We still need to adress a couple of other important commands and concepts that relate to LVM objects.
Commands and concepts that are related to backup and performance, will be covered in other chapters.

lvmstat:

Reports input/output statistics for logical partitions, logical volumes and volume groups.

It is specifically meant to show the IO on the LV's of a VG, or of all Partitions in a LV.

lvmstat { -l | -v } Name [-e | -d] [-F] [-C] [-c Count] [-s] [Interval [Iterations]]

By default, the statistics collection is not enabled in the system. You must use the -e flag to

enable this feature for the logical volume or volume group in question. Enabling the statistics collection

for a volume group enables for all the logical volume in that volume group.

The first report generated by lvmstat provides statistics concerning the time since the system was booted.

Each subsequent report covers the time since the previous report. All statistics are reported each time lvmstat runs.

>> To enable/disable the statistics for a specific logical volume, use the following command:

lvmstat -l lvname -e # enable

lvmstat -l lvname -d # disable

>> To enable/disable the statistics for all logical volumes in a volume group, use the following command:

lvmstat -v vgname -e # enable

lvmstat -v vgname -d # disable

>> To display the history of all the partitions of logical volume hd2, type:

lvmstat -l hd2

>> To display the history of top five logical volumes of volume group uservg, type:

lvmstat -v uservg -c 5

>> To display six reports at two second intervals for the volume group rootvg, type:

lvmstat -v rootvg 2 6

Example:

lvmstat -v rootvg

Logical Volume iocnt KB_read KB_wrtn Kbps

hd8 4 0 0 0.00

paging01 0 0 0 0.00

..

Quorum:

A Volume Group can consist of multiple Physical Volumes (disks). It could happen, that a Physical Volume

malfunctions for some reason. Whether the whole Volume Group can stay online, depends on the "quorum" as it is

at that time.

As you know, each Physical Volume has a VGDA area.

The quorum is the minimum number of VGDAs, or Physical Volumes, that must be good to keep the VG online.

As you will understand, the quorum is thus a critical number.

In AIX, per default the following situation is in effect:

The quorum by default must be greater than 51% of the total of VGDAs.

The VGDAs are divided in the Volume Group on the Physical Volumes according to the amount of

physical disks:

VG with one PV: The disk contains two VGDAs.

VG with two PVs: The first disk contains two VGDAs and the second disk contains only one VGDA.

VG with 3 or more PVs: Each disk contains only one VGDA.

Per defdault, if a VG "looses" it's chorum, it will be varied off. So if the number of Physical Volumes that are "up",

is below the quorum, the VG will also not activate when you try to vary it on.

You can use the chvg command to change that behaviour.

chvg command:

The chvg command changes the characteristics of a volume group.

-Q flag: Determines if the volume group is automatically varied off after losing its quorum of physical volumes.

The default value is yes. The change becomes effective immediately.

n: Will stay active until it looses all Physical Volumes.

y: the Volume Group is automatically varied off if it looses it's quorum.

chvg -Qn vg02

Chapter 2. Some keypoints about Tape devices.

2.1 About Tape Devices:

Tapedevices on AIX are named like "/dev/rmt*", like /dev/rmt0 (your first device) and /dev/rmt1 (second device) etc...

But such corresponding hardware, has multiple "instances" (special devices), and all generally have different properties.

Take a look at the following table:

Special_File Rewind_on_Close

/dev/rmt* Yes

/dev/rmt*.1 No

/dev/rmt*.2 Yes

/dev/rmt*.3 No

/dev/rmt*.4 Yes

/dev/rmt*.5 No

/dev/rmt*.6 Yes

/dev/rmt*.7 No

So, you might create simple backups, using rmt0 or rmt1, like:

tar -cvf /dev/rmt0 /appl # tape archive (tar) backup of the /appl filesystem to tape mounted on rmt0

or

tar -cvf /dev/rmt1 /appl # tape archive backup of the /appl filesystem to tape mounted on rmt1

Remark: backup commands like "backup", "tar", "cpio" etc.., are covered in another chapter.

But, if you use a script, using for example series of tar commands, the special file you use is very important!

That is so, because for example "rmt0" will rewind after close (after each tar command has ended)

while "rmt0.1" does not rewind !

Using (for example) rmt1 or rmt1.1?

So, if your script uses a series of commands to backup a listing of filesystems, then you better use rmt0.1 or rmt1.1 etc..

Those special devices does not rewind after each command, and thus will not overwrite any previous content

that was on the tape, from the previous command.

This script then is OK: This script then is WRONG:

tar -cvf /dev/rmt1.1 /appl tar -cvf /dev/rmt1 /appl

tar -cvf /dev/rmt1.1 /data tar -cvf /dev/rmt1 /data

tar -cvf /dev/rmt1.1 /oradata/dumps tar -cvf /dev/rmt1 /oradata/dumps

Here you have three "files" on tape, Here, the only backup you have is the last one: "/oradata/dumps"

representing your three backups. Each command, overwrites the result of the former command.

Note: the point here is to stress the importance of the non-rewinding class of a tape device.

If you just take into account usable flags of the tar command (or other archiving command), then tar itself

will be able to manage things for you. Take a look at those tar flags:

-c create Used to create a new tape archive (tar) file.

-r append So, with "append" you can just "add" backups, instead of creating new "tape archives".

-x extract

-v verbose

-t list

As noted before: backup commands will be discussed in another chapter.

If you use as the first tar command "tar -cvf", and as the following tar commands "tar -rvf"

you will just append into the archive, instead of creating new archives.

So, deciding on "-c" and "-r" in using tar is important. The "-v" flag is just a "verbose" flag.

Listing product data from the device:

As we have already seen in chapter 1, producing product data from your device can be done with the "lscfg" command:

lscfg -vl rmt0

Manufacturer...............EXABYTE

Machine Type and Model.....IBM-20GB

Device Specific(Z1)........38zA

Serial Number..............60089837

..

Listing Availability of tape device(s):

Also, as we have see from chapter 1, we can view if a device is actually configured, or if

it has only the "Defined" status in the ODM:

lsdev -Cc tape

rmt0 Available 10-60-00-5,0 SCSI 8mm Tape Drive

2.2 The "mt" or "tctl", and "tapeutil" commands:

2.1.1 The "mt" or "tctl" commands:

The "magnetic tape" mt command (or "tctl" command) is used to control your mounted tapes.

Normally, you would use the "-f" parameter, to designate which tapedevice you want to control.

For example, you might have both "/dev/rmt0" and "/dev/rmt1", and by using -f you can tell "mt" which

device you want it to operate on.

If you leave out the "-f", then if the TAPE variable is in place, then that device will be taken.

The syntax of mt is:

mt -f <devicename> <subcommand> like for example

mt -f /dev/rmt0 rewind

The following important subcommands can be used:

rewind, rewoff1 rewinds the tape

fsf no_of_files fast skip forward: Moves the tape forward the number of files (or "markers", or "blocks")

specified by the "no_of_files" parameter and positions it to the beginning of the next file.

bsf no_of_files back skip forward: Moves the tape backwards the number of files specified by the

no_of_files parameter and positions it to the beginning of the last file skipped.

Example of usage:

Suppose we use the following script to backup some filesystems.

Comment "logical tapepointer or pos. at file#"

mt -f /dev/rmt1 rewind # first rewind the tape

tar -cf /dev/rmt1.1 /apps # will be the 1st backupfile on tape 0

tar -cf /dev/rmt1.1 /software # will be the 2nd backupfile on tape 1

tar -cf /dev/rmt1.1 /opt # will be the 3rd backupfile on tape 2

tar -cf /dev/rmt1.1 /var # will be the 4th backupfile on tape 3

tar -cf /dev/rmt1.1 /u01/oradata # will be the 5th backupfile on tape 4

tar -cf /dev/rmt1.1 /u02/oradata # will be the 6th backupfile on tape 5

tar -cf /dev/rmt1.1 /u03/oradata # will be the 7th backupfile on tape 6

Now, suppose at a later time, the filesystem "/u01/oradata" gets corrupted, and

after rebuilding that filesystem, we want to restore it from our latest tape.

We can do that in the following way:

1. First, rewind the tape:

mt -f /dev/rmt1 rewind

2. Move the tape 4 files ahead, so that it is positioned at the beginning of the backup of "/u01/oradata".

 If you move 4 files, then you are at the beginning of file# 5, which is the beginning of "/u01/oradata".

mt -f /dev/rmt1.1 fsf 4

3. Now, restore the data of "/u01/oradata":

tar -xvf /dev/rmt1.1 /u01/oradata # note: to restore with tar, use the -x flag

The "tctl" command can be used much in the same way as the "mt" command, in managing your tapedevice.

It even has more subcommands compared to "mt".

Examples:

To rewind the rmt1 tape device, enter:

tctl -f /dev/rmt1 rewind

To move the tape to the third file (or "marker" or "block"):

tctl -f /dev/rmt0.1 fsf 3

And if the TAPE variable is set (or if /dev/rmt0.1 is the default), then just use:

tctl fsf 3

2.2.2 the tapeutil command:

If you have installed a "tape library" (any sort of robot with a magazine, either be small or large),

then you can use the "tapeutil" command to program the library.

On AIX, typically, your first tape library would be named "smc0".

For example, suppose you have a small pSeries machine, with only the local rmt0 device.

After installing a certain tapelibrary, you would use the "lsdev" command like so:

 # lsdev -Cc tape

rmt0 Available 08-08-00-0,0 LVD SCSI 4mm Tape Drive

rmt1 Available 06-08-00-2,0 IBM 3580 Ultrium Tape Drive

smc0 Available 06-08-00-2,1 IBM 3576 Library Medium Changer

In this case, the new tape device is "/dev/rmt1", which uses the interface / library "smc0".

Now, this device could have only one "drive" (/dev/rmt1) and a magazine with a number of "slots", containing tapes.

You then could use the tapeutil command to load a tape from a certain slot into the drive, and the other way around.

/usr/bin/tapeutil -f /dev/smc0 move <fromslot> <toslot>

For example:

tapeutil -f /dev/smc0 move -s 10 -d 23

This upper command, moves the tape from slotnumber 10, into the tapedrive designated by 'd 23'.

For the exact details of such a command (of a certain real library), you should refer

to the manual of that particular library.

2.3 Some other commands, and examples, related to tapedevice:

chdev for changing device properties as block_size:

The "chdev" (change device) command, is generally used to change properties of a device (like an ethernetcard,

or tapedevice). In it's simplest for, this command has the syntax:

chdev -l <device> -a <property=value>

So, suppose that you want to change the "block_size" property of your drive, and set it to value of 512 bytes, use

chdev -l /dev/rmt0 -a block_size=512

Some backup command examples:

Next, lets view a couple of representative commands on how to make backups to a tape mounted on rmt0.

All those backup commands will be discussed in a later chapter, but it might be interresting to view how

they look like:

mksysb -i /dev/rmt0 # makes an Operating System backup with rootvg to tape.

backup -0 -uf /dev/rmt0 /data # backup the "/data" filesystem, using the backup command, to tape.

savevg -if /dev/rmt0 uservg # backup the volume group "uservg" to tape, using the "savevg" command.

tar -cvf /dev/rmt0 /data # backup the "/data" filesystem, to tape, using the tar command.

The "tcopy" command:

The tcopy command copies magnetic tapes, like "tcopy source_tape destination_tape"

If you only specify the source, the tcopy command prints information about the size of records and tape files.

Example:

tcopy /dev/rmt0 /dev/rmt1

Note: you could also use the dd command, like this:

dd if=/dev/rmt0 ibs=1024 obs=1024 of=/dev/rmt1

Chapter 3. Some keypoints on Memory.

There are many new things in AIX v6.1, compared to AIX v5.3, but with respect to memory management,

the differences are really not so terribly large. Rather, the difference in memory management between for example v5.1

to v5.3 are more profound than going from v5.3 to v.6.1.

The commands to view and manage memory (like "vmo") and the common monitoring tools have not changed from v5.3 to v6.1.
But, some important vmo default values, did changed though.

There is certainly a lot "to understand" when pondering about memory in AIX, but at the same time, there are also

a lot of facts that are "just the way they are".

Let us just walk through a number of important aspects of memory.

3.1. Pages and segments:

One important aspect of AIX memory is VMM: The role of Virtual Memory Manager (VMM) is to provide the

capability for programs to address more memory locations than are actually available in physical memory.

On AIX this is accomplished using segments that are partitioned into fixed sizes called “pages”.

– A memory segment is 256M

 This is true for the older 32bit memory model, and is still true for the 64bit model.

 A segment can be "shared" (accessible by multiple processes), or "private".
– the default page size is 4K

– POWER 4+/5/6 can define large pages, which are 16M

- As of Power5+, you can also use 64KB (as of AIX 5.3 5300-04), and 16GB pages.

Such a page, is the unit of IO with respect to paging. So, although it's the default, 4K seems a bit small,if

many pages will swap in and out. At the same time, a unit of 16GB seems only appropriate

for very heavy workloads on very large memory (theoretically).

On systems that support 64KB pages, the AIX kernel will automatically

configure 64KB pages for the system. 64KB pages are fully pageable, and the size of the

pool of 64KB page frames on a system is dynamic and fully managed by AIX.

Pools of 4K an 64KB pageframes can exists at the same time on a system.

The 16M and 16GB page sizes are intended to be used only in very high-performance

environments, and AIX will not automatically configure a system to use these page

sizes. A system administrator must configure AIX to use these page sizes and

configure the number of pages of each of these page sizes. Furthermore, AIX will not

automatically change the number of configured 16MB or 16GB pages based on demand.

Although tuning is not exclusively done by the vmo command, it's a most widely used tool.

With respect to pagesizes, you often have to revert to vmo, as in the following example:

vmo -r -o lgpg_regions=64 -o lgpg_size=16777216 # here, 1GB of 16M pages are configured.

Whether you need to reboot depends if DLPAR features are available on your platform, and have been implemented.

Configuring 16GB page support, and poolsize, must be done using the HMC.

Pages of different size said to be in different "memory pools". So, while only using 4K and 16M pages,

you might end up with for example 5 pools at a certain time.

It should be noted that on AIX v6, many vmo settings are considered to be restricted, which means

that you should check with Support if your change is a viable option.

But you can do such a change anyway.

3.2. 32bit and 64 bit models:

3.2.1 32 bit models: The Small Memory Model and Large memory Model:

This sections deals with 32 bit applications only.

How many segments a program can use really depends on the memory model used, and if the app is 32 or 64 bit.

Here we will talk solely about 32bit programs in a 32bit environment.

Don't forget: Virtual memory is at work, so each program has a 4GB address space.

The 4GB memory space (per program (!); remember, it's virtual) is divided into 16 x 256 segements.

0x0 kernel 0x0 kernel

0x1 user text 0x1 user text

0x2 user stack, data private area, malloc() 0x2 user stack, data

0x3 0x3 user data private area, malloc().

0x4 0x4 (also called "heap")

0x5 shared memory, or 0x5

0x6 memory mapped files 0x6

0x7 mmap etc.. 0x7

0x8 0x8

0x9 0x9 shared memory, or

0xA 0xA memory mapped files

0xB 0xB mmap etc..

0xC 0xC (area shrinked down)

0xD Shared Libs 0xD Shared Libs

0xE Kernel 0xE Kernel

0xF Shared Libs data 0xF Shared Libs data

32 bits 32 bits

Fig. 1. Small Memory Model Large Memory Model

using

LDR_CTRL=MAXDATA=N segments

or compiling with bmaxdata=N segments

32bit: The Small Memory Model:

Here, AIX assigns a virtual address space partitioned into 16 segments of 256 MB.

In the ’Small Memory Model’ for an application, the application has only one segment, segment 2 (0x2), in which it

can malloc() data and allocate additional thread stacks. This stack area is thus a private area.

It does, however, have 11 segments of shared memory into which it can mmap() or shmap() data.

32bit: The Large memory Model:

You can control the boundary between Private and Shared memory, giving more Private memory to the application,

and at the same time reducing the amount of Shared memory.

You can devide memory into "private" memory area's (private for an application), and shared memory,

which can be accessed by multiple processes, or just for memory-mapped files.

By using mmap like functions, the process can also map files into that shared memory.

It's not uncommon, to use an environment variable in the profile of the credentials under which

an application start, to set aside more private memory (at the cost of shared memory).

The following is an example for a 32bit application:

LDR_CNTRL=MAXDATA=0x50000000

which means that 4+1=5 segments are reserved for that program's private working area.

Especially using 32bit JVM, these methods were widely used, to expand the native heap.

For programs under your control (having sources), you could also use the "bmaxdata" compiler option, like so:

cc test.o -bmaxdata:0x60000000

The number 0x60000000 is the number of bytes, in hexadecimal format, which is 6 x 256 MB segments

32bit: The Very Large memory Model:

Actually, there is a third option as well. This was called the "Very large Memory Model".

In this case, programs had to be compiled using "-bmaxdata:0xN0000000 DSA"

where DSA is "Dynamic Segment Allocation". This allowed for 8 private segments, allocated

in a dynamic way.

Remark about the "EXTSHM" environment variable:

In the 32bit architecture, a process is per default allowed to attach to a maximum of 11 shared memory segments .

Using EXTSHM, really changes the nature of the shared memory segments that are attached by an application .

The "granularity" of the "segment-attach" then changes fundamentally, so that it does not involve a complete segement

anymore. Practically speaking, the allocation is on the "n x Page" level.
This will prevent the "segment table full" errors, but some users reported some performance issues.

(Although these are all 32bit issues, at the AIX 53 platform, fixes became available that enabled

this variable for 64bit programs. This was done to improve the interoperability between 32 and 64 bit programs)

In a sense you might say: this is all AIX 4.2 stuff, since 64bit support already was available in 4.3.

Not really. So many apps remained 32bit for such a long time, and some even still are today.

3.2.2 The 64 bit memory model:

This virtual memory is incredebly much larger compared to the 32bit model.

256 MB memory segments are still used, but about 4,300,000,000 segments are available instead of 16.

Segments are dynamically allocated within specified memory ranges for various uses, like private memory

or shared memory. User data, or private area, can now occupy up to 448 Petabytes of memory.

3.3. "Computational" and "Non Computational" Memory.

Most performance monitoring tools, show items that might easily escape your attention.
For example, on AIX, the "topas" utility (used on a lpar) is highly appreciated. Even if you only use it

to get a "quick" "real_time" view on performance. For example, you want to know how busy the cpu's are,

the current memory occupation, how the paging space is used etc..

Note: for people no so aquinted with AIX, "topas" looks a lot like "nmon", found on most other platforms.

Here is an example screen of topas:

topas

Topas Monitor for host: stargate EVENTS/QUEUES FILE/TTY Fig. 2

Mon Dec 14 16:16:50 2009 Interval: 2 Cswitch 5984 Readch 4864

 Syscall 15776 Writech 34280

Kernel 63.1 |################## | Reads 8 Rawin 0

User 36.8 |########## | Writes 2469 Ttyout 0

Wait 0.0 | | Forks 0 Igets 0

Idle 0.0 | | Execs 0 Namei 4

 Runqueue 11.5 Dirblk 0

Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 0.0

lo0 213.9 2154.2 2153.7 107.0 106.9

tr0 34.7 16.9 34.4 0.9 33.8 PAGING MEMORY

 Faults 3862 Real,MB 1023

Disk Busy% KBPS TPS KB-Read KB-Writ Steals 1580 % Comp 27.0

hdisk0 0.0 0.0 0.0 0.0 0.0 PgspIn 0 % Noncomp 73.9

 PgspOut 0 % Client 0.5

Name PID CPU% PgSp Owner PageIn 0

java 16684 83.6 35.1 root PageOut 0 PAGING SPACE

java 12192 12.7 86.2 root Sios 0 Size,MB 512

lrud 1032 2.7 0.0 root % Used 1.2

aixterm 19502 0.5 0.7 root NFS (calls/sec) % Free 98.7

topas 6908 0.5 0.8 root ServerV2 0

ksh 18148 0.0 0.7 root ClientV2 0 Press:

gil 1806 0.0 0.0 root ServerV3 0 "h" for help

This time, I would like your attention focused on the small block in blue: "%Comp" and "%Noncomp".

%Comp: Computational Memory:
Simply said: It's the percentage of real memory used by all processes.

Computational pages are pages used for the text, data, stack, and shared memory of a process

%Non Comp:Non Computational Memory:
Simply said: It's the percentage of real memory used to cache data files.

%Client:

These are the percentage of cached pages, due to remote data like NFS.

So in the example above, the "filecache" is larger than what all processes combined uses from the memory.

You cannot draw conclusions from this allone. You also need to know the purpose of this specific lpar (machine).

Suppose the machine works mainly like a "File Server", then the filecache should indeed be large.

But suppose it's a database machine, then there might be quite a lot of private user session area's (processes),

as well as large shared memory segments that should be left to handle by the RDBMS('ses) themselves.

That's why in this section, I attended you to the Computational or Non Computational memory percentages.

Maybe, for a certain role for your machine, the one should favor the other.

But if the machine does not have a specific database role (or something similar) then per default

AIX displays an quite "hungry" filecaching algolrithm. So, if the machine is up for some time, it
generally will "appear" "as if" your free memory is low.

Indeed, then it actually is. But pages will be replaced by "wanted" pages from disk or pagefile,

if page faults occur.

But you have quite some control on how the system will replace filecache pages or computational pages.

3.4. Some Commands showing Memory or memory utilization:

3.4.1. The "lparstat -i" command:

As of AIX5.3, this command is available.

The information that is displayed, is actually in the context of "virtualization", so you can view

for example how many "virtual cpu's" are assigned to your lpar, and many other aspects that are related to virtualization.

With respect to memory, you can see how much Memory is currently assigned to the lpar, and what the

minimum an maximum values are to where your memory can shrink or grow to.

lparstat -i

Node Name : stargate5

Partition Name : stargate5

..

..

Online Memory : 4096

Maximum Memory : 8192

Minimum Memory : 2048

..

etc..

3.4.2. Some quick commands that will show you the total real memory:

bootinfo -r

lsattr -E -l mem0

lsattr -E -l sys0 -a realmem

prtconf | grep Mem

3.4.3. A nice summary on VMM using "vmstat -v":

On all unixes, "vmstat" is used to show statistics on virtual memory usage, paging status, and cpu usage.
On AIX, if you call vmstat using the "-v" flag, "vmstat -v", you get a comprehensive overview on

various statistics maintained by the Virtual Memory Manager.

Example:

vmstat -v

4030464 memory pages

3822276 lruable pages

2565 free pages

1 memory pools

794538 pinned pages

80.0 maxpin percentage

20.0 minperm percentage

80.0 maxperm percentage

67.4 numperm percentage

2578020 file pages

0.0 compressed percentage

0 compressed pages

0.1 numclient percentage

80.0 maxclient percentage

7588 client pages

0 remote pageouts scheduled

3985 pending disk I/Os blocked with no pbuf

750525 paging space I/Os blocked with no psbuf

11983944 filesystem I/Os blocked with no fsbuf

0 client filesystem I/Os blocked with no fsbuf

3937 external pager filesystem I/Os blocked with no fsbuf

0 Virtualized Partition Memory Page Faults

0.00 Time resolving virtualized partition memory page faults

Some of the most important output records (for now) are:

file pages Number of 4 KB pages currently used by the file cache.

lruable pages Number of 4 KB pages considered as possible candidates for replacement (lru least recently used).

free pages Number of free 4 KB pages.

memory pages Size of real memory in number of 4 KB pages.

numclient percentage Percentage of memory occupied by client pages.

client pages Number of client pages (usually due to caching remote files).

numperm percentage Percentage of memory currently used by the file cache.

maxperm percentage This specifies the point above which the page stealing algorithm steals only file pages.

minperm percentage This specifies the point below which file pages are protected from the re-page algorithm.

maxclient percentage This specifies the maximum of the client cache due to cached pages from remote files and JFS2.

Note: On AIX v6, vmstat can show us statistics on WPAR's as well. This will be a subject in another chapter.

3.4.4. Using the vmo command with "-L" as a reporting flag:

The "vmo" is used to tune (change) many memory "tunables".

But if you want to see the values what they are now, use the vmo command with the "-L" flag.

Examples:

The following command produces a large output. All vmo tunables are shown with their current values.

vmo -L

The following command shows the min and max values controlling file cache:

vmo -L minperm% -L maxperm%

3.5. A few examples on tuning VMM using vmo:

There are many tunables that can be controlled by the "vmo" command.

As you know by now, having seen the stuff above, vmo is geared towards the tuning of VMM.

3.5.1 vmo Housekeeping: vmo flags, and "tuncheck", "tunsave":

First, here is some simplified housekeeping:

vmo -L [tunable} # shows the current value.

vmo -o Tunable=New_Value # configures the tunable to take on the New_value.

vmo -p -o Tunable=New_value # set the New_value now, and also persistently store it in the "/etc/tunables/nextboot".

vmo -r -o Tunable=New_value # New_value will be active after the next reboot.

So, you might put tunables in files like "/etc/tunables/nextboot", but other files are possible too.

Important is ofcourse, if AIX will execute or check them at boottime. So, a file like "/etc/rc.local" could be

used too to place vmo commands in.

If you want to check a file if at least the ranges of values of your vmo commands are OK, you may want

to check out the "tuncheck" command.

tuncheck [-r | -p] -f Filename

The tuncheck command validates a tunable file. All tunables listed in the file will be checked

for range and dependencies. If a problem is detected, a warning is issued.

There are "two ways" that a check can be done:

- check if the values in a file could be applied immediately, thus in the current context.

- check if the values in the file can be implemented during boot of the system.

-f: used to specify your file with vmo tunables;

-r: check if the file is valid at boot;

-p: checks the file in the current and boot context.

If you want to save your current running values of the vmo tunables to a file, then use the tunsave command.

3.5.2 Example: Protecting computational memory from pagestealing.

Your lpar has a certain amount of real memory, which is certainly much much lower than the virtual address space.

So, if you have a number of competing processes for memory pages, the system may start "paging", that is,

swapping pages to and from the page file(s) (or swapfiles).

The paging algolrithm is pretty complex, but anyway, the pagestealing component is very important in this process.

Ofcourse, different purposes of a machine, requires different tunables. For example, for a database machine,

you can optimize VMM in a certain way, which is different from a File Serving machine.

The two most basic page replacement tunable parameters are minperm and maxperm.

These tunable parameters are used to indicate how much memory the AIX kernel should use
to cache non-computational pages.

- The maxperm tunable parameter indicates the maximum amount of memory that should be used to cache non-computational pages.

 But this also influences the point above which the page stealing algorithm steals only file pages.

- The minperm tunable is a measure for the target minimum amount of memory that should be used for non-computational pages.

 But this also specifies the point below which file pages are protected from the re-page algorithm.

So, if you want a FileServer (not stealing pages from filecache), you might do this:

vmo -p -o maxperm%=80 # actually an AIX 53 default

vmo -p -o minperm%=60

vmo -p -o maxclient%=80 # actually an AIX 53 default

But, if you want a Database Server, where you want the pagestealer to leave the computational pages

in place (actually more or less "as much as possible"; it's not exact science), you might do this:

vmo -p -o maxperm%=35

vmo -p -o maxclient%=35

vmo -p -o minperm%=15

This all also relates to paging. As a sort of "overall" setting, we must turn our attention also to the
lru_file_repage parameter.

The "lru_file_repage" parameter can affect the paging behaviour in considerable way.

By setting this parameter to 0, you force the system to only free file pages when you run out of memory

and to not write working pages out to paging space. This normally will decrease the paging rate,

and %swap-usage.

In other words: AIX, when under memory pressure, will "try harder" to steal memory from the file cache

instead of paging process related pages out to the paging space (lru_file_repage = 0).

So, when dealing with high paging rates, you might want to test the following:

vmo -p -o lru_file_repage=0 # instead of the value 1

Chapter 4. Some keypoints on the Object Data Manager - ODM.

The "registry" or "repository", of device, object and application metadata, is called the "ODM" in AIX.

It’s quite a unique feature for AIX, and you will not find the "same thing" on most other unixes.

Most prominently, the ODM stores metadata about "devices", and OS related filesets, but for some applications,

(most notably IBM applications like Websphere, VisualAge C etc..), the metadata for that app is stored in the ODM as well.

On the other hand, many other non-IBM software, have "nothing" to do with the ODM. For example, Oracle will use it's

own inventory and depends soley on environment variables, and it's own "registry" files.

ODM has some features of an object database, in the sense that objects are described by classes and attributes.

What is stored in the ODM is: Predefined and Configured device information, Software Vital Product Data, Smit menu's,

information pertaining to the Resource controller, Logical Volume Manager data, NIM, and data for certain (logging) daemons.

4.1 The physical ODM locations and files:

The with ODM corresponding files, can be found in the following directories:

/etc/objrepos

/usr/lib/objrepos

/usr/share/lib/objrepos

Normally, the admin's $ODMDIR variable points to "/etc/objrepos", so that certain "odm tools"

can operate on the "real" ODM.
If you want to "do something" with the ODM (which can be dangerous if you do not know exactly

what you are doing), like extending a schema, you need to do that on a testenvironment first.

On a test lpar, you can copy the ODM files to another location, and set the $ODMDIR to point to the new location.

See section 1.4 for an example.

Some of the most important files are:

Software Vital Product Data: Devices and LVM: errdemon:

/etc/objrepos/lpp PdDv Predefined Devices /etc/objrepos/SWservAt

/etc/objrepos/product PdCn Predefined Connection

/etc/objrepos/inventory PdAt Predefined Attribute

/usr/lib/objrepos/lpp Config_Rules Configuration Rules

/usr/lib/objrepos/product CuDv Customized Devices

/usr/lib/objrepos/inventory CuDep Customized Dependency

/usr/share/lib/objrepos/lpp CuAt Customized Attribute

/usr/share/lib/objrepos/product CuDvDr Customized Device Driver

/usr/share/lib/objrepos/inventory CuVPD Customized Vital Product Data

Structure:

/etc/objrepos: Here the customised devices object classes and the SWVPD

(Software Vital Product Database) for the / (root) part of the installable

software product. The directory also contains links to the predefined

devices object classes and the SMIT menu object classes. The ODMDIR

points to here by default.

/usr/lib/objrepos: This contains the predefined devices object classes,

the SMIT menu object classes and the four object classes used by the

SWVPD for the /usr part of the installable software product. The object

classes in this repository can be shared across the network by /usr

clients. This can be shared between AIX clients only.

/usr/share/lib/objrepos: This contains the object classes used by the

SWVPD for the /usr/share part of the installable software product.

4.2 Devices:

With respect to "devices", the ODM is divided in two sections:

Predefined Devices: PdDv, PdAt, PdCn

Predefined devices - Contains the information of all the devices supported by

the operating system. The main files are PdDv (predefined devices), PdAt (predefined attributes), and

PdCn (predefined connections).

Customized devices: CuDv, CuAt, CuDvDr

This section stores the information for the devices that are already configured in the system. The main files are CuDv

(customized devices), CuAt (customized attributes), and CuDvDr (customized device drivers).

Every device in the ODM has a unique definition that is provided by three attributes:

1. Type

2. Class

3. Subclass

Explanation of how it works:
Most devices are self configuring devices. The command that configures devices is "cfgmgr".

The "cfgmgr" always runs at boottime, but root can also run it at will at any time.

This command verifies the information physically stored in the device

(most devices store this information in a ROM), then cfgmgr compares the

information against the ODM in the predefined section; if it finds a match, then it

creates the entries in the customized section of the ODM. Also, the cfgmgr

command loads the driver for the device.

If the device cannot be found in the ODM (predefined) when it is detected, you

may need to add the device drivers for that device.

The configuration manager (cfgmgr) runs every time the system is restarted,

looking for new devices and verifying the state of the devices previously

configured.

If cfgmgr cannot deal with the device (maybe it is not present in the Predefined section),
you might create the decription yourself using the "mkdev" command.

Especially the "lsdev" command (more on lsdev later) can show you the status of a device.
- If it is listed as "Available", then it is indeed configured and ready for use.

- If it is listed as "Defined", then the ODM has the description of the device, but it is not configured (yet).

The "devices" ODM files:

- The Configuration Rules (Config_Rules) object class contains the configuration rules used by the Configuration Manager.

- The Customized Attribute (CuAt) object class contains customized device-specific attribute information.

- The Customized Dependency (CuDep) object class describes device instances that depend on other device instances.

- The Customized Device Driver (CuDvDr) object class stores information about critical resources that need

 concurrence management through the use of the Device Configuration Library subroutines.

- The Customized Devices (CuDv) object class contains entries for all device instances defined in the system.

- The Customized Vital Product Data (CuVPD) object class contains the Vital Product Data (VPD) for customized devices.

- The Predefined Attribute (PdAt) object class contains an entry for each existing attribute

 for each device represented in the Predefined Devices (PdDv) object class.

- The various bus resources required by an adapter card are represented as attributes

 in the Predefined Attribute (PdAt) object class.

- The Predefined Devices (PdDv) object class contains entries for all device types currently

 on the system. It can also contain additional device types if the user has specifically installed

 certain packages that contain device support for devices that are not on the system.

4.3 Software Vital Product Data

Certain information about software products and their installable options is maintained

in the Software Vital Product Data (SWVPD) database. This is considered to be part of ODM.

The SWVPD consists of a set of commands and Object Data Manager (ODM) object classes

for the maintenance of software product information. The SWVPD commands are provided for the user
to query (lslpp) and verify (lppchk) installed software products. The ODM object classes

define the scope and format of the software product information that is maintained.
The installp command uses the ODM to maintain the following information in the SWVPD database:

•Name of the installed software product

•Version of the software product

•Release level of the software product, which indicates changes to the external

 programming interface of the software product

•Modification level of the software product, which indicates changes that do not affect

 the external programming interface of the software product

•Fix level of the software product, which indicates small updates that are to be built

 into a regular modification level at a later time

•Fix identification field

•Names, checksums, and sizes of the files that make up the software product or option

•Installation state of the software product: applying, applied, committing, committed, rejecting, or broken.

4.4 Smit Menu's and dialogs.

The SMIT ODM object repository is under "/usr/lib/objrepos".

Smit uses menu's, dialogs, selectors etc.., which information is stored in:

•sm_menu_opt

•sm_name_hdr

•sm_cmd_hdr

•sm_cmd_opt

In principle (not the subject of this document) you can even extend these class defintions,

to add or distract to or from the functionality of "smit". First, on a test lpar, do something similar as this:

$ mkdir ~/objrepos

$ cp /usr/lib/objrepos/sm* ./objrepos

$ ODMDIR=~/objrepos; export ODMDIR # now $ODMDIR points to your objectrepository

Then, invoke smit with the "-o" flag, in order to provide your test ODM location.

For example, to "view" some of those definitions, you can try the following command:

$ odmshow sm_menu_opt

class sm_menu_opt {

 char id_seq_num[17]; /* offset: 0xc (12) */

 char id[65]; /* offset: 0x1d (29) */

 char next_id[65]; /* offset: 0x5e (94) */

 vchar text[1025]; /* offset: 0xa0 (160) */

 vchar text_msg_file[1025]; /* offset: 0xa4 (164) */

 long text_msg_set; /* offset: 0xa8 (168) */

 long text_msg_id; /* offset: 0xac (172) */

 char next_type[2]; /* offset: 0xb0 (176) */
etc..

4.5 Specific AIX commands to manage or view the objectclasses in ODM.

There are commands, representing an interface to ODM, with which you can add, retrieve, drop and change objects.

The following commands can be used with ODM:

odmget and odmshow,

odmadd,

odmdrop,

odmdelete,

odmcreate,

odmchange

WARNING: It would be a very trivial remark to tell you to be carefull with commands that modify the ODM.

Example 1: odmget, odmshow

The odmget command takes as input a search criteria and a list of object classes,

retrieves the selected objects from the specified object classes, and writes an ASCII odmadd input file to standard output.

But this means also that you can just "view" the objects and attributes, using this command.

odmget [-q criteria] objectclass # where -q criteria is used to filter information.

odmget -q name=hdisk0 CuAt

odmget -q 'name=inet0 AND attribute=route' CuAt

odmget -q 'name=bos.net.tcp.client' lpp

odmget -q 'lpp_name=bos.net.tcp.client' product

odmget -q 'lpp_id=74' inventory

odmget -q name=lv09 CuAt # the "lv09" object is a Logical Volume (in chapter 4 more on LV's)

CuAt:

 name = "lv09"

 attribute = "lvserial_id"

 value = "00d7beec00004c00000001249820e17f.19"

 type = "R"

 generic = "D"

 rep = "n"

 nls_index = 547

etc.. (rows omitted)

The odmshow command takes as input an object class name (ObjectClass) and displays

the class description on the screen. The class description is in the format taken as input to the odmcreate command.

odmshow objectclass

$ odmshow sm_menu_opt

Example 2: odemdelete, odmadd

-- odmadd:

The following command will create entries in the ODM of a certain ibm storage system.

After the predefined sections are available, and the storage system is accessible,

the cfgmgr might find this device and create customized entries.

odmadd array.iscsi.ibm-dac-V4.add

-- odmdelete:

Normally, when you delete a device using smitty or rmdev, that would do the job.

Also, uninstalling an application, using the right uninstaller, would do the job too.

But, sometimes, an uninstall of some app fails, thereby leaving entries in the ODM.

In some of those cases, you might need to clean the ODM from those unwanted entries.

Also, some regular commands will issue a number of "odmdelete" statements, like using

"exportvg" if you want to export a Volume Group from your system.

As an example using "odmdelete", consider the following script.

Suppose you know there are incorrect ODM entries of the rootvg.

Then you can try to use the "rvgrecover" shell script.

The script "rvgrecover" issues a series of odmdelete statements, just like exportvg does.

At the end of the script, an importvg is done.

The importvg command, reads the VGDA and LVCB from the boot disk, resulting in new ODM entries.

This script, is only provided for illustration purposes of using "odmdelete".

The rvgrecover script has the following contents:

PV=/dev/ipldevice # PV=hdisk0

VG=rootvg

 cp /etc/objrepos/CuAt /etc/objrepos/CuAt.$$

 cp /etc/objrepos/CuDep /etc/objrepos/CuDep.$$

 cp /etc/objrepos/CuDv /etc/objrepos/CuDv.$$

 cp /etc/objrepos/CuDvDr /etc/objrepos/CuDvDr.$$

 lqueryvg -Lp $PV | awk '{ print $2 }' | while read LVname; do

 odmdelete -q "name = $LVname" -o CuAt

 odmdelete -q "name = $LVname" -o CuDv

 odmdelete -q "value3 = $LVname" -o CuDvDr

 done

 odmdelete -q "name = $VG" -o CuAt

 odmdelete -q "parent = $VG" -o CuDv

 odmdelete -q "name = $VG" -o CuDv

 odmdelete -q "name = $VG" -o CuDep

 odmdelete -q "dependency = $VG" -o CuDep

 odmdelete -q "value1 = 10" -o CuDvDr

 odmdelete -q "value3 = $VG" -o CuDvDr

 importvg -y $VG $PV # read disks metadata in order to get the ODM entries

 varyonvg $VG

No need to understand this script completely. The point is that we see that "odmdelete" operates on

CuAT, CuDv, CuDep etc.. In order to remove all entries from ODM. That's all.

4.6 Regular AIX commands to view the ODM objects, attributes and values:

Device configuration: lsdev, lsattr, lscfg

Software: lslpp, lppchk

Although it depends "on where you are", that is, a normal lpar, or a virtual IO Server (VIOS), these

commands can display different context.

In all cases, the commands will show you ODM objects, attributes and values.

Examples:

lsdev:

The lsdev command displays information about devices in the Device Configuration database.

You can display the default output one of the following ways:

•From the Customized Devices object class using the -C flag

•From the Predefined Devices object class using the -P flag

lsdev -Cc tape

rmt0 Available 10-60-00-5,0 SCSI 8mm Tape Drive

lsdev -Cc disk

hdisk0 Available 20-60-00-8,0 16 Bit LVD SCSI Disk Drive

hdisk1 Available 20-60-00-9,0 16 Bit LVD SCSI Disk Drive

hdisk2 Available 20-60-00-10,0 16 Bit LVD SCSI Disk Drive

hdisk3 Available 20-60-00-11,0 16 Bit LVD SCSI Disk Drive

hdisk4 Available 20-60-00-13,0 16 Bit LVD SCSI Disk Drive

lsdev -Cc adapter

ent0 Available 04-08 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)

ent1 Available 04-09 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)

ent2 Available 07-08 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)

ent3 Available 07-09 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)

fcs0 Available 05-08 FC Adapter

fcs1 Available 09-08 FC Adapter

ide0 Available 03-08 ATA/IDE Controller Device

lai0 Available 0B-00 GXT135P Graphics Adapter

ohcd0 Available 02-08 USB Host Controller (33103500)

ohcd1 Available 02-09 USB Host Controller (33103500)

sa0 Available LPAR Virtual Serial Adapter

sa1 Available LPAR Virtual Serial Adapter

sisscsia0 Available 08-08 PCI-X Dual Channel Ultra320 SCSI Adapter

sisscsia1 Available 06-08 PCI-X Dual Channel Ultra320 SCSI Adapter

sisscsia2 Available 0K-08 PCI-XDDR Dual Channel Ultra320 SCSI Adapter

The following commands, lsattr and lscfg, usually uses the "-l" flag to name a particular device

from which you want information.

lsattr:

Displays attribute characteristics and possible values of attributes for devices in the system.

You must specify one of the following flags with the lsattr command:

-D Displays default values.

-E Displays effective values (valid only for customized devices specified with the -l flag).

-F Format Specifies the user-defined format.

-R Displays the range of legal values.

Most of the time, you would use "-E" in order to show the running values, and "-l" to give as a parameter

the device logical name.

This command gets the current attributes (-E flag) for a tape drive:

lsattr -E -l rmt0

mode yes Use DEVICE BUFFERS during writes True

block_size 1024 Block size (0=variable length) True

extfm no Use EXTENDED file marks True

ret no RETENSION on tape change or reset True

..

To list the default values for a tape device (-D flag of "Default"), use

lsattr -l -D rmt0

This command gets the attributes for a network adapter:

lsattr -E -l ent1

busmem 0x3cfec00 Bus memory address False

busintr 7 Bus interrupt level False

..

To list only a certain attribute (-a flag), use the command as in the following example:

lsattr -l -E scsi0 -a bus_intr_lvl

bus_intr_lvl 14 Bus interrupt level False

lsattr -El tty0 -a speed

speed 9600 BAUD rate true

lscfg:

Displays configuration, diagnostic, and vital product data (VPD) information about a device, or the system.

lscfg [-v] [-p] [-s] [-l Name]

This command gets the Vital Product Data for the tape drive rmt0:

lscfg -vl rmt0

Manufacturer...............EXABYTE

Machine Type and Model.....IBM-20GB

Device Specific(Z1)........38zA

Serial Number..............60089837

..

-l Name Displays device information for the named device.

-p Displays the platform-specific device information. This flag only applies to

 AIX 4.2.1 or later.

-v Displays the VPD found in the Customized VPD object class. Also, on AIX 4.2.1

 or later, displays platform specific VPD when used with the -p flag.

-s Displays the device description on a separate line from the Name and

 location.

lscfg -vp | grep -p 'Platform Firmware:'

lscfg -vp | grep -p Platform

Platform Firmware:

ROM Level.(alterable).......3R040602

Version.....................RS6K

System Info Specific.(YL)...U1.18-P1-H2/Y2

Physical Location: U1.18-P1-H2/Y2

The ROM Level denotes the firmware/microcode level

Platform Firmware:

ROM Level RH020930

VersionRS6K

..

The following command shows details about the Fiber Channel cards:

lscfg -vl fcs* (fcs0 for example, is the parent of fsci0)

Chapter 5. Some keypoints on the system p environment.

Before we can go into a subject like "virtualization", "PowerVM", "LPARS" etc..

we need to have a "little overview" on the system p environments itself.

What machines are we talking about when we consider AIX?

And, can that hardware run other OS as well?

There are many platforms using Power architecture, for example "iSeries" or "system i" (originally used for i5/OS),

and "pSeries" or " system p" (originally for AIX, and Linux).

Since Power5, the Hypervisor in "I" and "p" are very similar, so running AIX and i5/OS (AS400 descendant)

can be done in different LPARS.

System p as of Power5, can implement a shared pool of cpu's, and make "micropartitioning" possible.

Actually, that feature was already available on "system i" on Power4.

System p on Power4, used dedicated resources per lpar (like dedicated cpu).

From now on, if we talk about Power, it should be understood that we are talking about Power on "p".

Here are some further facts:

- The machine architecture + processor architecture + Virtualization options, are "somewhat" summed up

 (or expressed) by the "POWER platform", like POWER4, POWER5, and the latest POWER6 architecture.

 Ofcourse, the used Processors themselves, determine the Power version in the first place, but

 a certain Power version, implies what your virtualization options are as well.

- A physical Machine, usually get's partioned into "Virtual Machines" or "LPARS's " (Logical Partitions),

 where each LPAR is a full OS installation, including such properties as having a Hostname, IP adress,

 and in case of AIX, a ROOTVG (with "/", "/usr", "/etc" and other typical OS filesystems), and possibly other VG's.

 As from AIX v6 (and not related to Power), it is possible to create confined "containers", called WPAR's,
 running inside an AIX lpar. These WPARS, are shielded subsets, for running specified applications.

- A major feature of the POWER5 machines is a new Hypervisor that convergenced with iSeries systems

 As a result, on Power5/6 on p, you can run:

 -AIX (was originally the target OS for a system p lpar)

 -i5/OS (or ibm I, the AS/400 descendant)

 -Linux for Power (Suse, RedHat)

System p (pSeries) machine models (up to 2009):

The physical p machines, have had various names like "eServer pSeries", but their latest "mark" is "system p".

Some of the main models of the recent "past", and today's models, are:

The Large range Some Former Models (Power4/4+) Recent models (Power5/5+): Latest "converged" system p 2009 models:

of RS/6000 pSeries 610 p 510 entry model system MTM machine type model

models. pSeries 615 p 520 low-end midrange (Power6/6+)

Power2/3 pSeries 620 p 550 low-end midrange Power 520 Unified 8203-E4Aa

typical version pSeries 640 p 560 middle midrange Power 550 Unified 8204-E8Aa

of AIX used at pSeries 655 p 570 middle midrange Power 570 Unified 9117-MMAa

later models: 4.3 pSeries 670 p 575 middle midrange Power 595 Unified 9119-FHAa

pSeries 680 p 590 high-end Typical AIX: v5.3, v6.1

pSeries 690 p 595 high-end

Typical AIX: v5.1, v5.2 Typical AIX: v5.3, v6.1

So, what you can encounter as an OS on system p is most likely to be:

AIX, or Linux, and (sometimes) i5/OS (or "IBM I")

But the most typical OS found on system p, still is AIX (so it seems to me).

Characteristics of POWER Virtualization:

POWER4 Partitioning is mainly characterized by the fact that a LPAR used dedicated processor(s), fixed memory,

and dedicated physical IO adapters. At any time, resources (like cpu) could be added or removed.

DLPAR, or Dynamic LPAR, made it possible to add or remove resources without restarts.

Although the "theory" was pretty clean, I have to say that it was not so easy to implement it.

POWER5 Partitioning is mainly charcaterized by the fact that "micropartitioning" is possible:

LPARS are allocated processor resources from a shared processor pool.

By enabling special LPAR(s), called Virtual IO Server (VIOS), IO resources can be "virtualized", resulting in

"virtual SCSI" and "virtual Ethernet".

It is still possible however, to allocate dedicated CPU('s), (and IO adapters) to an LPAR, which then do not participate

in the shared processor pool.

And, for an lpar to be able to use micropartitioning, you need at least AIXv5.3. Lower versions uses the

the dedicated resource model.

Furthermore, virtualized devices can only be assigned to AIX v5.3 or later.

POWER6 builds further on POWER5, with a lot of additional features like "PowerVM Active Memory Sharing",

and in combination with AIX v6, WPAR or Workload Partitioning (resulting in confined application "containers"),

running as "subsets" within an LPAR. Also, "live mobility" can be done, which is the ability to migrate

an active or inactive AIX or Linux logical partition from one system to another.

CPU per lpar Memory per lpar IO per lpar

POWER4 dedicated CPU (granularity 1) dedicated memory dedicated adapter `

on p (granularity 256M)

POWER5 - Shared pool of cpu's dedicated memory, but dedicated adapter still possible

on p virt. cpu's: min/max/desired - 0.01% with: min/max/desired Virtualized SCSI with VIOS

ent. cpu: min/max/desired - 0.1% Virtualized Ethernet with VIOS

- dedicated CPU still possible

POWER6 - Shared pool of cpu's dedicated memory, but dedicated adapter still possible

PowerVM virtual cpu's: min/max/desired with: min/max/desired Virtualized SCSI with VIOS

on p entitled cpu: min/max/desired Virtualized Ethernet with VIOS

- dedicated CPU still possible Active Memory Sharing

Frame:

The 'whole" of a "system p" machine, is most often referred to as "frame".

A frame can consists of multiple components, like powerunits, IO drawers, and most notably

the "CEC", which is the "Central Electronics Complex".

The CEC will contain a number of "processor books".

Some typical numbers on the number of LPARS:

- A p520 is often not partitioned (just running the "full system partition").

 Or it runs a couple of LPARS (not withstanding the fact, that some people push them to the very limits).

- A p550 probably has a couple of LPARS (say 4, 6 or 8).

- A p570 usually has about 12, 16 or 24 LPARS (or so) configured.

- A p595 could have so many resources, that a high number of LPARS might live there.

But, in all cases, numbers are just some typical values, and there could be LPARS with very heavy resource requirements

(big database Server, high-end app server etc..), that might easily lower the total number of LPARS.

The Hardware Management Console:

As of 550, all p machines have a HMC connected (although all p machines types could have a HMC connection).

It's a graphical console (based on Linux).

The HMC is mainly used in configuring and maintenance of LPARS.

It actually has "Wizards" in helping you setting up LPARS, displaying all necessary screens.

Along with setting up LPARS, after they are up and running, you can use (in a fully graphical way) the HMC to:

- shutdown and restart an LPAR

- Reconfigure resources like cpu, memory, virtualized adapters, per LPAR

- Install and configure VIOS

- Install the OS in an LPAR

The HMC is also used to view and manage the p machine itself.
One aspect of that, is the "Service Focal Point" for receiving, logging, and tracking system errors,

and even possibly (or likely to be) configured for reporting automatically critical events to IBM services.

The are a few alternatives (or add on's) like IVM, WebSM.

The Virtual IO Server (VIOS):

Virtual I/O Server can provide "virtual SCSI" and "virtual networking" to LPAR clients.

The VIO Server (or VIOS) can thus save on using private adapters at LPARS.

Only clients "of sufficient level" can use the through VIO exposed resources.
For AIX it means as of version 5.3 can use VIOS exposed adapters. So, AIX 5.2 LPARS must use dedicated adapters.

The Hypervisor:

Central to Virtualization is the Hypervisor.

the POWER Hypervisor is for example responsible for dispatching all the workloads of all active LPARS

across the physical processors.

It also provides for inter-partition communication that enables the Virtual I/O Server’s virtual

SCSI and virtual Ethernet function.

Embedded in firmware, the Hypervisor is always present and can be viewed as a layer between

the guest Operating Systems running in LPARS, and the hardware.

There is quite a difference between former AIX versions, and version v.5.3.

As you can see from below output of "topas -L", the OS can make "hcalls" which are calls to the Hypervisor,

not unlike systemcalls in an OS. It’s a fully Hypervisor "aware" operating system.

topas -L

Interval: 2 Logical Partition: lp05 Wed Dec 23 19:24:15

 Poolsize: 3.0 Shared SMT ON Online Memory: 8192.0

 Entitlement: 2.5 Mode: Capped Online Logical CPUs: 4

 Online Virtual CPUs: 2

 %user %sys %wait %idle physc %entc %lbusy app vcsw phint %hypv hcalls

 47.5 32.5 7.0 13.0 2.0 80.0 100.0 1.0 240 150 5.0 1500

 ==

 logcpu minpf majpf intr csw icsw runq lpa scalls usr sys wt idl pc lcsw

 cpu0 1135 145 134 78 60 2 95 12345 10 65 15 10 0.6 120

 cpu1 998 120 104 92 45 1 89 4561 8 67 25 0 0.4 120

 cpu2 2246 219 167 128 72 3 92 76300 20 50 20 10 0.5 120

 cpu3 2167 198 127 62 43 2 94 1238 18 45 15 22 0.5 120

Toolbox Linux:

If you have installed AIX in some LPAR, and you want to use a linux toolset, then that's possible

if you install the "AIX Toolbox for Linux Applications".

The AIX Toolbox for Linux Applications contains free open source software built for AIX 5L,

packaged with RPM. It includes a variety of utilities & libraries often found on Linux distros.

Most of the software will be installed in "/opt/freeware".

Chapter 6. Some keypoints on Virtualization.

Very Thick Fat redbooks have been written on this subject, so what can a single simple chapter of some simple guy tell you?

Well.. Not much indeed. But some important keypoints should be possible.

6.1 Quick Overview:

What we are trying to achieve, is "somewhat" (I am not such a good artist) illustrated by the figure below.

The Redbooks have much clearer pictures ofcourse, but I don't want to copy those ;-)

What I hope to make clear here, is that the AIX v5.3 and v6.1 LPARS are "micropartitioned"

meaning that their CPU resources are coming from the "shared pool" of CPU, and can be fractions of cpu units.

Here, the AIX 5.3 LPAR, has an "entitled" cpu capacity of 0.3.

The AIX 6.1 LPAR, has an "entitled" capacity of 1.5.

Contrary, the AIX 5.2 LPAR cannot be micropartitioned, and must used "dedicated" cpu's.

Note: If you want, the 5.3 an 6.1 LPARS could have used dedicated CPU as well, but that is not common practice.

Fig. 4. Remote

HMC

IVM

Local HMC

The VIO's are optional. These "Virtual IO Servers", are specialized LPARS, for managing and exposing

"virtual storage" and "virtual ethernet". Again, only AIX client LPARS as of v5.3 (and Linux, and i5/OS)

can be "clients" of those resources.

Hopefully you can see from the figure, that the AIX 5.2 client LPAR, uses "dedicated adapters",

while the AIX 5.3 and 6.1 LPARS uses the "virtualized disk and ethernet resources", as it is

provided bij the VIO Server.

Again, I hope it get's clear from the figure, that LPAR3 (the AIX5.2 LPAR) uses dedicated adapters,

but that a whole bunch of other IO adapters (mass storage devices, Ethernet) are "owned" by the VIOS.

The VIOS has very sophisticated ways to map those resources to client LPARS, which then can use them.

VIO A
(optional)
0.5 cpu

LPAR1
AIX 5.3
0.3 cpu

LPAR2
AIX 6.1
1.5 cpu

LPAR3
AIX 5.2
2 cpu

LPAR4
i5/OS
0.7 cpu

VIO B
(optional for
redundancy)
0.5 cpu

HYPERVISOR

service processor

CPU CPU CPU

shared pool (of cpu)

cpu cpu cpu cpu

IO adapters
adapters

wpar1

wpar2

VIO thus may be used to reduce the need for private, dedicated, adapters.

If you want to use those virtualized resources as adapters, storage, and networking, then you must use
at least one VIO Server. But to avoid a single point of failure, with production systems, you

will add one VIOS for redundancy. That might even go further one step, by creating 2 VIOS for networking

purposes, and 2 VIOS for providing virtualized storage.

So, in such a case, on a larger production machine, you might see a SANVIOA, SANVIOB, NETVIOA, NETVIOB.

So, here VIOS'ses are added for redundancy, and functionality is split up in virtual network and virtual storage.

Note: suppose the machine in figure 4, was a p570, probably something like 16 (or so) LPAR's

would have been configured. Also, in reality, a "wonderfull" mix of different AIX versions, and i5/OS, and Linux LPARS

is not so very likely. Most of the time, an Organization obviously wants standardization of versions and OS.

The HMC is the graphical console, with which you manage your "system p" machine, and the LPARS that live on it.

As you may have read in Chapter 5, the HMC is used mainly to manage LPARS, that is,

creating LPARS, configure them to use certain amounts of resources, manage them (like shutdown/startup),

install Operating Systems in the LPARS, and re-configure LPARS with respect to resources as needed.

Usually, a "local" HMC is present, physically located near the managed system p machine(s). But "remote" HMC consoles are

possible too.

The local HMC needs a network connection to the "service processor" of the managed 'system p' machine.

Note: to manage Power6 machines, you need HMC v 7.
It's very likely that a HMC is used in your work. But (especially meant for smaller systems), an alternative

is the Integrated Virtualization Manager (IVM), which is webbased. IVM is packaged in the Virtual I/O Server (VIOS) software.

Usually, an IBM engineer have set things up, like testing a freshly installed system p machine, and connecting it to the HMC.

I said "usually", because that is a likely scenario with the larger (and expensive) machines like the p590.

But, with the smaller machines, maybe you as as sysadmin have to set things up. And, maybe you do that as well

with the large systems.

Anyway: creating and configuring the LPARS really is your business. Also, installing software on those LPARS,

is one of your duties too.

The default userid and password of a HMC is: userid=hscroot, password=abc123

Ofcourse, at any live HMC, that password has been changed soon after the installation.

6.2 Planning, and assigning resources (cpu, memory) to LPARS:

Remember, older AIX versions only use dedicated CPU (at granularity of 1).

As of AIX v5.3, micropartitioning can be implemented.

We can create LPAR's using commands (or scripts) from the HMC.

However, since the HMC provide graphical "Wizards" to create LPARS, many sysadmins

will just use the relatively easy graphical console.

How you will do the partitioning, using commands/scripts, or in a graphical way, probably

also depends on the size of your "shop". If you have a couple of 570's, or a 590,

you may choose the easy graphical setup. If you work in a sort of "assembly line", that have

to produce hundreds of LPAR's, you probably will create scripts.

However you will do partitioning, you need to do a certain amount of PLANNING beforehand.

You always should know the "needed" capacities beforehand, that you are about to assign to the LPARS.

Although certain features like "capped/uncapped" and " min / max / desired" of a resource (like cpu, memory)

can be associated with an lpar (and can eliviate potential problems), you still need to know what the LPARS are for.

Suppose you have created 16 LPARS on a 570, all configured with a (pretty low) mean value of 0.3 cpu, 2GB memory,

and suddenly it turns out that (say) 2 LPARS actually are not just "middle of the road" Servers, but one should function

as a HUGE database Server, and the other should be a HUGE application server, then.. You may have a problem.

So, planning and knowing what the LPARS are for, is critical.

Using VIOS is not always "all sunshine" either. If some LPARS have high Backup & Recovery requirements,

using virtualized resources as network and storage, the capacity of the shared VIOS resources may

not be large enough to serve the bandwith of all backing up all LPARS.

Carefull considerations and planning is essential here, for production systems.

Setting values at Micropartitioning:

When setting up an LPAR using micropartitoning, either by commands/scripts or graphical, the following

attributes will be encountered (either shown in a graphical screen, or as a parameter on the commandline):

PU: Processing Units:

Processing capacity can be configured in fractions of 1/100 of a processor. The

minimum amount of processing capacity that has to be assigned to a partition is

1/10 of a processor.

On the HMC, processing capacity is specified in terms of "processing units".

So, for example, you could allocate a LPAR a PU value of 0.8.
In this case, the LPAR is "entitled" a CPU capacity of "0.8 CPU".

When setting up an LPAR, you can specify a Minimum (min), a Desired (Des), and a Maximum (max)

value of PU. Then, when the Hypervisor is distributing the total workload, you LPAR will not

dive under the Min value, and it will not exceed the Max value. Normally, it will operate in

the "Desired" value.

If you were actually setting up an LPAR, these settings would be stored in a "partition profile",

(as well as what you would select as settings for virtual cpu's, and memory).

Virtual processors:

It's a representation of a entity that behaves like a cpu. Assigning more virtual processors

to a LPAR, enhances "concurrency".

Here too, when setting up an LPAR, you can specify a Minimum (min), a Desired (Des), and a Maximum (max)

value of the number of virtual cpu's. Then, when the Hypervisor is distributing the total workload, you LPAR will not

dive under the Min value, and it will not exceed the Max value. Normally, it will operate in

the "Desired" value.

Min, Max, Desired Memory:

The same principle applies with memory too. You can specify a Minimum, a Maximum, and Desired amount of memory.

Capped, Uncapped:

Capped: The assigned PU to a partition will never exceed the max PU, even if resources are

available in the shared pool.

Uncapped: The assigned PU to a partition, may exceed the max PU, if resources are available.
Since you may have multiple LPARS to be "uncapped", specifying a "weight" for this LPAR

must be done too. So, if multiple LPARS are uncapped, then the system will know how to distribute

free resources to them.

The weight can also be used to favor one LPAR, over the others.

Partition profiles:

When working with the HMC, the values for the above atributes (like min, des, max PU) will be saved to a profile.

You could create several profiles, and when you would start an LPAR, you can then choose which profile to use.

The first profile you create (when setting up an LPAR), is called the "default profile".

Document and calculate it:

A spreadsheet (or other type of registering information) can be of help.

For a "system p" machine, you could create a document like the following example:

Virt. Cpu PU Memory Capped Weight

LPAR: min des max min des max min des max

VIOA

VIOB

N05L01

NO5L02

N05L03

etc.. totals: sum sum sum sum sum sum

6.3 A few remarks on creating a LPAR using the commandline on the HMC:

One important item should be clear. You first create a LPAR (of a certain "type", like VIO or AIX etc..).

Then, when the LPAR exists, then you install the corresponding Operating Software on it (like AIX).

Let's see how we can create a LPAR using commands on the HMC.

Many commands and options are available using the HMC.

You can use commands for a variety of things like:

- for documentation or query purposes

- influence the state of an lpar (stop, start, use another profile etc..)

- creating objects, like a LPAR

>> Query for information:

For example, you can use the "lssyscfg" command to obtain information from all lpars on a managed system.

This command has nummerous flags. Use the "-m" flag to specify a "system p" frame.

hscroot@hmc-op:~> lssyscfg -m pSRV570 -r lpar -F name,lpar_id,state

N05LP06,6,Running

N05LP05,5,Running

N05LP04,4,Running

N05LP03,3,Not Activated

N05LP02,2,Running

VIO-ServerA,1,Running

>> Changing the state of a LPAR:

For example, to shutdown a certain LPAR on a managed system, you can use:

hscroot@hmc-op:~> chsysstate -r lpar -m pSRV570 -o shutdown -n N05LP04

>> Create a new LPAR:

For example, to create a new LPAR, use a command similar to:

hscroot@hmc-op:~> mksyscfg -r lpar -m pSRV570 -i name=n05LP07, profile_name=normal, lpar_env=aixlinux,
 min_mem=512, desired_mem=2048, max_mem=4096, proc_mode=shared, min_proc_units=0.2, desired_proc_units=0.5,

 shared_proc_pool_util_auth=1, max_proc_units=2.0, min_procs=1, desired_procs=2, max_procs=2, sharing_mode=uncap,

 uncap_weight=128, boot_mode=norm, conn_monitoring=1, shared_proc_pool_util_auth=1

It's only an example. But these are pretty complex commands indeed.

Do you notice the min/max/des values for the memory and PU's?

Mind you: this is ONLY setting up the LPAR (of a certain type, like an AIX or Linux capable LPAR).

After the LPAR exists, you still need to install the Operating System.

6.4 A few remarks on Creating a LPAR the graphical way:

You can create different types of LPARS:

1. VIO Server

2. I5/OS LPAR (an LPAR supporting the i5/OS, or "ibm I" Operating System - the AS/400 descendant)

3. An AIX-, or Linux LPAR

That you want to create 2) or 3) is rather obvious. These are the functional Operating Systems, and only you know

which Operating Systems you need to install on those LPARS.

Note: for i5/OS (ibm I) lpars, some licensing constraints exists.

Only if you want to implement "virtual scsi", and/or implement "shared ethernet",

then you need at least one VIOS (and possibly two for avoiding a single point of failure).

This is how you normally proceed:

- Create the LPAR of the type you want.

- After the LPAR is created, install the correct OS (Like AIX, Linux, or VIO Server software).

So, using the graphical way, right-click "Server Management", then choose "Create", and

next choose "Logical Partition" (see Fig. 5).

mailto:hscroot@hmc-op:~%3E%20%20mksyscfg%20-r%20lpar%20-m%20pSRV570%20-i%20name=n05LP07,%20profile_name=normal,%20lpar_env=aixlinux,

Fig. 5.

In the screen that follows (shown in figure 6), you must specify

- a "Partition ID" (the next number, or if this is the first LPAR, it's "1"),

- the Name of the LPAR (Like for example, VIOSA, or N05L06)

- and, make the choice whether this LPAR is going to be a: AIX or Linux lpar, or a i5/OS lpar, or a Virtual IO Server.

Fig. 6.

If this would be your "starting point" in setting up a system p, and you would like to use "virtual scsi",

you probably would create the VIO LPAR first (it's not mandatory, you can always do it later).

Suppose that we just want to create a "normal" AIX LPAR. We can always create a VIOS at a later point.

After making our choices in figure 6 (like for example Partition ID=6, Partition Name=N05LP06, and it's an AIX LPAR),

the following screen appears:

Fig. 7.

All the settings you specify in the following screens, like min/desired/max PU (see section 6.2)
and other parameters, will be stored in a "partition profile".

That's why you need to give a "profile name" here, because you are able to create other profiles as well.

What then will follow, are setup screens where you can specify min/desired/max Memory, and the same for PU,

and the same thing for assigning virtual cpu's. This is what we discussed in section 6.2.

Fig. 8.

In fig. 8, you can say what you want for "min/desired/max" Memory values for this particular LPAR.

It works quite the same way for PU and virtual cpu's.

Fig. 9.

A similar screem will follow, for setting the min/desired/max of virtual cpu's.

You understand that we are trying to setup micropartitioning (as of AIX 5.3), and thus

we do not need "dedicated cpu('s)", but instead, we can make use of the shared pool of cpu's,

which enables us to specify "min/desired/max PU" and "min/desired/max virtual processors".

Anyway, this section and the former one, gave a little insight on how to create LPARS, using

the commandline (of HMC), and using a graphical setup Wizard (of HMC).

At some point, after the LPAR(s) are created, we still need to install the OS'ses on them.

So, we skip a number of setup screens, and at some point you are able to set the "bootmode":

Fig. 10.

Ofcourse, after the OS is loaded and operational in the LPAR, the bootmode should be set to "normal",

which means a normal boot.

But, at this point, while we are configuring the LPAR, we should put it into "SMS bootmode",

which enables use to install the Operating System at the next start of the LPAR.

This could be a network installation of the OS using "NIM", or using a local CD / DVD.

Independent of the fact that you were setting up a regular LPAR (like AIX, or Linux), or

you were setting up a VIOS, the "red line" in the sketched setup presented above, is quite same.

After you have setup a VIOS, and some client LPARS, and all Operating systems would also

have been installed, you might see something similar as the following HMC screen:

Fig. 11.

Note, that if you "right-click" any partition, you may select an option from the menu

that appears, like "Restart Partition", or "Shutdown Partition" etc..

This is shown in figure 12.

Fig. 12.

Also note that you can choose "properties", with which you can change resources like number of PU,

number of virtual cpu's, or adding an Adapter etc..

But, there still remains one important factor here: the ownership of IO adapters (fc, storage, network).

6.5 IO adapters and virtual adapters: VIOS and VIO commands:

Whether it's a VIOS, or an AIX LPAR etc.. Assigning resources as "min/desired/max PU" etc.., is not that hard to do,

and works the same way for those different types of LPARs.

In the former section, we created an AIX capable LPAR. There we "have seen" an example of assigning PU, virtual cpu's etc..

But in section 6.4, we left one thing out: selecting IO adapters.

Here are some choiches possible:

If it was an LPAR meant for AIX 5.2, you have to choose a dedicated storage adapter, and dedicated (private) network adapter.
If it was an LPAR meant for AIX as of 5.3, it can make use of virtualized scsi and virtualized ethernet, so

it does not need to have "private" adapters (although it may have them).

Note: Whether an AIX 5.3 or 6.1 LPAR uses "private" or "virtualized" (by VIOS) adapters, depends on certain things.

If you expect the througput to Storage to be very high, it's probably best to choose for private Fiberchannel cards.
Don't forget, if you use VIOS for Storage access, and/or network access, all the client LPARs share the capabilities

of the VIOS. Maybe that's OK for "avarage" Servers. Maybe it's NOT OK for high volume Servers. (Well, it's only my opinion).

If the VIOS LPAR is created, and the VIOS software installed "into" that LPAR, the VIOS can

be configured to provide virtual IO to it's client LPARs.

The "root" user of VIOS, is "padmin", so you set up a terminal to the VIOS and log on as padmin.

Per default, the VIOS will launch a limited shell. It is called the "ioscli".
You can break the limitations by running "oem_setup_env", to leave the restricted shell behind.

In VIOS, a large number of (new) commands are available (like lsvdev), as well as "normal" AIX commands (like lsdev),

which can use special flags, and produce output in the context of virtualization.

Let's suppose, that while creating the VIOS LPAR, we assigned (most or all) of the physical adapters

to that LPAR. Those adapters are related to Storage IO, and network adapters.

Thus, VIOS will own those physical adapters.

Thus, you have a couple of physical adapters assigned to the VIOS. One or more adapters

represent IO to (local or remote) Storage.

For simplicity, let's asume this Storage is a number of local disks (althoug it's not much different if it were remote storage).

Now, since all Storage adapters are placed at the VIOS, we have those disks visible in VIOS.

Now suppose hdisk2, hdisk3, and hdisk4, are still free (maybe hdisk0 and hdisk1 already belong to the VIOS software).

You want to assign those disks to the AIX LPARS N05LP01, N05LP02, and NO5LP03, as "virtualized scsi".

Simple example of the above case:

The VIOS is actually connected to the Storage, because it has assigned the IO adapters to it.

Suppose that on the VIOS, with the "lspv" command, we see that (as an example)

hdisk2, hdisk3 and hdisk4 are still unassigned.

Step 1:

On the VIOS, create a number of "Virtual SCSI Adapters". Say, you make 3 virtual adapters, to support 3 client LPARS,

who will use virtual Storage.

Now, you probably say: why that Virtual nonsense? Why create something as "virtual adapters" at the VIOS?
The Hypervisor will just use those "logical constructs", to be able to map a client "virtual adapter",

to a "VIOS virtual adapter. And if a relation exists between the real disk and such a "virtual adapter" at the VIOS,

then client LPAR will "see" that storage as if it was it's own storage.

You will see that happen in a moment.

Fig. 13.

associate vhost1 on VIOS, with the LV on hdisk2

mkvdev –vdev LVLP01 –vadapter vhost1

real hdisk2

Now make a VG called

"VGLP01" using hdisk2

Then, make a LV called

"LVLP01" on VGLP01

So, just create the "virtual scsi adapters" in VIOS:

Fig. 14.

VIOS

vhost1
slot 20

AIX client LPAR

vscsi1
slot 20

You then are able to create a number of those adapters, called "vhost0", vhost1", "vhost2" etc.. And each of them uses

a unique defined port or "slot", like 10, 20, 30 etc..

When done, you might check it from the VIOS command prompt:

VIOSA ~$ lsdev -virtual

name status description

vhost0 Available Virtual SCSI Server Adapter

vhost1 Available Virtual SCSI Server Adapter

vhost2 Available Virtual SCSI Server Adapter

..

Here, on VIOS, you see the representations of those virtual controllers, by their names like "vhost0" etc..

Suppose thus, that you have created the following:

name slot purpose: to connect to a virtual client scsi adapter at the client

vhost0 20 N05LP01, using a client virtual scsi adapter in the same slot number

vhost1 30 N05LP02, using a client virtual scsi adapter in the same slot number

vhost2 40 N05LP03, using a client virtual scsi adapter in the same slot number

Step 2:

Create a "virtual scsi adapter" on the client, like LPAR "N05LP01".

On the HMC, rightclick the partition and choose "Properties" (like shown in figure 12).

In the screen that appears, choose "SCSI", then choose "Create client adapter".

Fig. 15.

Since we want to let this new client virtual scsi adapter on N05LP01, "vscsi0" to correspond to "vhost0 slot 20" on VIOS,

choose the following:

Client Slot: 20

Server Slot: 20

Step 3:

Return to the VIOS. Let's make "things" connect now.

Let's do something with the three disks that are visible from the VIOS.

VIOSA~$ mkvg -f -vg VGLP01 hdisk2 # So, we make a few Volume Groups.

VIOSA~$ mkvg -f -vg VGLP02 hdisk3

VIOSA~$ mkvg -f -vg VGLP03 hdisk4

Now (optionally), create LV's of a certain size. Virtual disks can either be whole physical disks or logical volumes.

The physical disks can either be local disks or SAN attached disks.

VIOSA~$ mklv -lv LVLP01 VGLP01 15G # You would make the LV's only if you only want to expose

VIOSA~$ mklv -lv LVLP02 VGLP02 15G # part of the physical disk to the client LPAR.

VIOSA~$ mklv -lv LVLP03 VGLP03 15G

The following statements actually will "associate" the LV's with the "virtual scsi adapters",

and will make the storage "known" to the client LPARS:

VIOSA~$ mkvdev -vdev LVLP01 -vadapter vhost0

VIOSA~$ mkvdev -vdev LVLP02 -vadapter vhost1

VIOSA~$ mkvdev -vdev LVLP03 -vadapter vhost2

So, for example, for LPAR N05LP01, the "virtual scsci adapter on slot 20" (vscsi0), is "bond" on the VIOS vhost adapter

on slot 20, which makes that the associated storage LVLP01 is accesible to the LPAR.

From now on, on the client LPARS, Physical Volumes like hdisk0, hdisk1 etc.. Are available.

6.6 Shared Ethernet Adapter on VIOS:

You could assign an LPAR it's own private ethernet adapter. But, just like virtual scsi, in a

LPAR with AIX version 5.3 or higher, we can create a "virtual ethernetadapter".

The VIOS owns all physical resources, but we will also create virtual ethernet adapters at the VIOS, and

we create a virtual ethernet adapter at each client LPAR. Again, those resources will be "mapped".

All LPARS should reside on the same IP subnet, like 10.10.10.0/24

If we want to let the LPARS communicate to the "outside world", 'through' the network capabilities of VIOS,

then at VIOS we have to create a "shared ethernet adapter".

All LPARS then have to reside into what is called "the same VLAN", and as such qualified by a unique VLAN ID.

So suppose we have the LPARS: LP01, LP02, and LP03.

Then on each LPAR, we create a virtual ethernet adapter.

Again, the "trick" is to let each chosen "slot" at a client virtual adapter, correspond to the slot

chosen at the VIOS.

So suppose we have this at the VIOS: Fig. 16.

Thus, as you can see, we have one virtual ethernet adapter defined, residing at slot 2.

Now, at each client LPAR, we will create a virtual ethernet adapter, using the same slot and VLAN ID:

Fig. 17.

That's done, the mappings are allright now. But we need to let the LPARS communicate, through the VIOS,

to the "outside world" as well.

Such a mapping has not been done yet. So let's create a "shared ethernet adapter".

On the VIOS, we have this situation:

$ lsdev -type adapter

name status description

ent0 Available 2-Port 10/100/1000 Base-TX PCI-X Adapter (1410890

ent1 Available 2-Port 10/100/1000 Base-TX PCI-X Adapter (1410890

ent2 Available Virtual I/O Ethernet Adapter (l-lan)

ide0 Defined ATA/IDE Controller Device

sisscsia0 Available PCI-X Dual Channel Ultra320 SCSI Adapter

vhost0 Available Virtual SCSI Server Adapter

vhost1 Available Virtual SCSI Server Adapter

vhost2 Available Virtual SCSI Server Adapter

vhost3 Available Virtual SCSI Server Adapter

So, presently at the VIOS, we have 2 real network adapters, and 1 virtual ethernet adapter.

Through correseponding slotnumber (and VLAN ID) at the clients and VIOS, those resources are connected.

Now, let's create the (virtual) shared ethernet adapter (sea):

$ mkvdev -sea ent0 -vadapter ent2 -default ent2 -defaultid 1

ent3 Available

en3

et3

You do not need to name the sea, because the system will name it for you.

Here, "ent3" is our shared ethernet adapter. The client LPARS will use this one for communication

to the outside world.

The "mkvdev" command used here to create the "sea", is probably "hocus pocus" if you see it for the first time.

It says this: for the realization of the sea object, take the real adapter "ent0", and the virtual adapter "ent2"

(to which client LPARS have connected their virtual ethernet adapters, due to the equal slotnumber),

and take as a VLAN ID the number "1".

So, the sea called "ent3" is sort of mapped to the real adapter "ent0" (which is connected to the outside world),

and the virtual ethernet adapter "ent2", is coupled to each virtual ethernet adapter at the client LPARS.

6.7 Some other examples:

Example 1: The "lsmap" command on VIOS:

On VIOS, the "lsmap" command can be usefull.

It can show the relation between a "vhost" adapter and the "physical or logical" backing device (=disk or LV)

that is in use at the client LPARS.

Example:

VIOS

virt. Ethernet adap

slot 2
vlan 1

switch

LPAR1

virt. Ethernet adap

slot 2
vlan 1

LPAR2

virt. Ethernet adap

slot 2
vlan 1ent0

ent2
ent3

ent0

ent0
phys

VIOSA~$ lsmap -all -type disk lv

SVSA Physloc Client Partition ID

--------------- -- ------------------

vhost0 U9117.570.65B61FE-V17-C11 0x00000002

VTD lvlp01

LUN 0x8100000000000000

Backing device hdisk2

Physloc

SVSA Physloc Client Partition ID

--------------- -- ------------------

vhost1 U9117.570.65B61FE-V17-C12 0x00000003

VTD lvlp02

LUN 0x8200000000000000

Backing device hdisk3

Physloc

SVSA Physloc Client Partition ID

--------------- -- ------------------

vhost2 U9117.570.65B61FE-V17-C18 0x00000004

VTD lvlp03

LUN 0x8300000000000000

Backing device hdisk4

Physloc

Some output codes are:

SVSA Server Virtual SCSI Adaper

Physloc Physical Location Code

VTD Virtual Target Device

LUN Logical Unit Number

SVEA Server Virtual Ethernet Adapter

SEA Shared Ethernet Adapter

Backing device the pysical volume, or logical volume, that is attached to the virtual scsi adapter

Example 2: Showing different types of storage on client LPARS:

How does it looks like when we want to show the Storage on client LPARS (like AIX clients),

using different models:

>>> The following LPAR has storage solely from VIOS:

P550LP4:/root # lspv

hdisk0 00cb61fe223c3926 rootvg active

hdisk1 00cb61fe2360b1b7 rootvg active

hdisk2 00cb61fe3339af9f appsvg active

hdisk3 00cb61fe3339b066 datavg active

P550LP4:/root # lsdev -Cc disk

hdisk0 Available Virtual SCSI Disk Drive

hdisk1 Available Virtual SCSI Disk Drive

hdisk2 Available Virtual SCSI Disk Drive

hdisk3 Available Virtual SCSI Disk Drive

>>> The following LPAR has storage from VIOS, but als has dedicated (private) FiberCards to a SAN:

P550LP5:/root # lspv

hdisk0 00cb61fe09fe92bd rootvg active

hdisk1 00cb61fe0a47a802 rootvg active

hdisk2 00cb61fe336bc95b appsvg active

hdisk3 00cb61fe321664d1 datavg active

P550LP5:/root # lsdev -Cc disk

hdisk0 Available Virtual SCSI Disk Drive

hdisk1 Available Virtual SCSI Disk Drive

hdisk2 Available 02-08-02 SAN Volume Controller MPIO Device

hdisk3 Available 02-08-02 SAN Volume Controller MPIO Device

So, here hdisk0, hdisk1 are from VIOS, but hdisk2, hdisk3 is from a SAN, to which P550LP5 is connected

with local FC cards.

Chapter 7. Some keypoints on Managing Software.

7.1 Software Packaging in general:

Fileset:

A fileset is the smallest individually installable unit. It is a collection of files that
provides a specific function. For example, the bos.net.tcp.client is a fileset in the

bos.net package.

Package:

A package contains a group of filesets with a common function. This is a single
installable image, for example, bos.net.

Licensed Program Product (LPP)

This is a complete software product, including all the packages and filesets required.

Bundle:

Sometimes, software is delivered as a "bundle", which is a collection of packages and/or filesets,

that are needed to install a certain software product, or feature.

Commonly, the above products are installed by the "installp" command, or using smitty.

Naming convention:

-- In general, Packages, and Filesets (of various programs) follow the following standard naming convention.

LPP.<msg|lang>.package.fileset

where the <msg|lang> part may denote the "locale" or "language" the package or fileset is in.

-- The OS related filesets however, often are in the form:

bos.package.fileset.<version>.bff

like for example:

bos.adt.prof.6.1.1.2.bff

7.2 Operating System Levels, and Maintenance:

-- The Former way:

Formerly, an AIX version was determined by the Release and (Recommended) Maintenance Level (ML) like:

AIX 5.2 ML5

P520:/root # oslevel -r

5200-05

-- The New way:

What is now (as of 2006) called "Technology Level", corresponds to what used to be called "Maintenance Level".

You can maintain your AIX operating system by installing Service Packs (SP), Program Temporary Fixes (PTF)

or Interim Fixes for the entire support life of the Technology Level.

Thus, between regular Technology Levels, IBM will release Service Packs,

which are PTFs that are grouped together.

Beside to install a SP ("grouped PTF's"), you can still install a single PTF, or a single Fix.

To see which Technology Level and Service Pack is currently installed, use "oslevel -s", like:

P550LP03:/root # oslevel -s

5300-04-02

This is an LPAR with AIX 5.3, Technology Level 4, Service Pack 2.

(So, the ouput is: "Version - Technology Level - Service Pack").

In the new release strategy, one would for example speak about "AIX V5.3 TL6".

Service Packs are cumulative, so if service pack 4 is installed, all of the previous critical fixes

from service packs 1 through 3 will also be installed.

A CSP, or "Concluding Service Pack" will identify the last service pack on a Technology Level.

In the "oslevel" output, this Service Pack will identify itself using the "CSP" string.

P570LP11:/root # oslevel -qs

5300-05-03-0000

5300-05-02-0000

5300-05-01-0000 # Now, the "counting" of SP's starts with "1"

5300-04-CSP-0000 # TL 4, with the Concluding Service Pack

5300-04-03-0000 # TL 4, SP 3

5300-04-02-0000

5300-04-01-0000

5300-03-CSP-0000

If you would apply an individual PTF or Fix, the fourth part will get a number as well.

The new IBM methodology provides for (about) two TL releases per year.

SP's are generally released (about) every four to six weeks after the release of a new TL.

Overview OS Fixes and other replacements/maintenance:

Fix or APAR: APAR is short for Authorized Program Analysis Report. An APAR is a (usually small)

emergency fix, or interim fix, to a unique problem on the system.
Usually, a fix of this type is installed using the "instfix" command.

PTF is short for Program Temporary Fix. A PTF is an updated fileset or a

new fileset that fixes a previous system problem. PTFs are installed in the same
way as regular filesets, that is, usually with smitty, or with the "installp" command.

A Service Pack is a number of PTFs that are grouped together.

A CSP, or "Concluding Service Pack" will identify the last service pack on a Technology Level.

A "Technology Level" update is a major update (formely called "recommended Maintenance Level").

Ways to maintain your OS:

There two ways to maintain your OS with respect to TL's, SP's and individual fixes:

- download it, and install it yourself using commands like installp, instfix, smitty.

- Using SUMA

7.3 AIX maintenance using SUMA:

SUMA is short for "Service Update Management Assistance".

It enables you to have your AIX system to automatically retreive TL's, SP's and even individual fixes.

It was first released with AIX v5.3.

It resembles "fixdist" somewhat, which could be found on older AIX versions.

You can let SUMA download a TL, a SP, or just a fix, at a date/time you want.

That is indeed a good thing.

Usually, you will use the "suma" command, and specify the options you want.

Per default, suma will save in: /usr/sys/inst.images

If you just let SUMA download TL's and SP's, then you are quite "safe".

But.. Nobody can deny that some specific software products are really tied to certain TL levels.

So, it is just not always feasable to "just" apply a SP or TL.

But you can at least let suma automatically download what you (might) need.

But there is a "but": you need a working connection to "Fix Central", and not everybody is able (or willing) to implement that.

View Basic SUMA options:

If you want to view "suma" right now, you can use the commandline, or the smitty tool,

which is the AIX "all in one" maintenance and configuration tool.

smit suma

 Service Update Management Assistant (SUMA)

Move cursor to desired item and press Enter.

 Download Updates Now (Easy)

 Custom/Automated Downloads (Advanced)

 Configure Suma

 Download Updates Now (Easy)

Move cursor to desired item and press Enter.

 Download by APAR Number

 Download by Fix Type

 Download Maintenance Level or Technology Level

 Download Service Pack

 Download All Latest Fixes

 Download by Fileset Name

To view basic suma settings from the commandline:

suma -c # Lists the SUMA global configuration settings

suma -D # Lists the SUMA task defaults

suma -l <TaskID> # Lists the specifics of the task with that TaskID

suma -l # Lists all tasks

Implementing SUMA:

As you can see from the figures above, smitty has a fairly simple interface to suma.

But knowing how to basically configure suma from the commandline, is required as well.

That is, reckognize the general form, and understand what a command does (by viewing a few examples here).

The basic form of the 'suma' command is:

suma { { [-x] [-w] } | -s CronSched } [-a Field=Value]... [TaskID]

-x: execute now

-w: writes or saves a SUMA task

-s: schedules a SUMA task, using a crontab like format

-a Field=Value many options can be specified in your command, or scheduled suma task.

Some of the most important are:

RqType:

RqType= APAR | PTF | ML | TL | SP | Fileset | Security | Critical | Latest

When suma is run with an RqType of Security, Critical, or Latest, the RqType is the only required field.

RqName:

Here you specify the name of the item that you request, like IY12345, or bos.rte.lvm etc..

Action:

Can be "Preview", "Download", or "Clean".

Preview: only a preview of the download

Download: download in the default location, or what is specified in DLTarget (DownLoad Target).

Clean: Download, and cleanup of all files that are not needed anymore.

Here are a few examples:

suma -x -a Action=Preview -a RqType=Latest # This will be executed now.

suma -x -a Action=Download -a RqType=Latest # This will be executed now.

suma -s "30 3 15 * *" -a RqType=Security \ # a scheduled command that will download Security fixes

 -a DisplayName="Download fixes on each day=15" # at 03.30h on every day_of_month=15

You see? The suma commands are actually fairly easy to read (and to create).

7.4 Applied and Committed Software:

Generally speaking: software can be "applied" or "committed" (and if it was applied,

then afterwards it can be "rejected").

For OS related filesets and packages, this is certainly true.

However, since "a certain command" can be recommended by a Manufacturer (or it says so in a readme),

you might use a certain command that also "commits" the software right away, after you have entered that command.

But in general, when a update is installed or applied, it enters the applied state and

becomes the currently active version of the software.

In this case, the previous version of the update is stored in
a special save directory "/usr/lpp/PackageName". This allows you to restore the previous version,

without having to reinstall it.

Software that has been applied to the system can either be committed (that is, make permanent), or

rejected. There are several ways to do that.

For example, The "installp -s" command can be used to get a list of applied products

and updates, that are available to be either committed or rejected.

7.5 Some important commands in managing software:

Some important commands are:

- instfix Used to install APARs (fixes)

- lslpp Used to query for filesets

- installp This is the "general" install command

- inutoc Updates the "table of contents"

- geninstall Generic installer that can handle various package formats.

- smitty The "friendly all-in-one" menu, also usable for installing software

- lppmgr Manages sources in the lpp_source in the NIM environment.

- lppchk Used for verifying a correct installation.

Now, there is not really a fixed, required location, where you must place the fix, or the filesets.

You could for example, create a directory "/tmp/inst" where you place the filesets in.

Let's take a look at a few examples.

smitty:

If you just start "smitty", you will see how easy it it to install software. It's just one of
the first menu entries: "Software Installation and Maintenance".

instfix:

Simplyfied command:

instfix -k [-i] <apar> -d <device>

Examples:

instfix -k IX75893 -d /dev/cd0 # install the fix from the CD or DVD /dev/cd0

instfix -k IX75893 -d . # install the fix from the current directory

instfix -T -d /dev/cd0 # To list fixes that are on a CD-ROM in /dev/cd0

instfix -ik IX12345 # Is this fix already installed?

Not all filesets for IX75893 were found.

Or use the "shortcut" smitty menu

smitty instfix

 Update Software by Fix (APAR)

Type or select a value for the entry field.

Press Enter AFTER making all desired changes.

 [Entry Fields]

* INPUT device / directory for software [] +

lslpp:

The lslpp command displays information about installed filesets or fileset updates.

It can use many flags. Some of the more important ones are:

-l: Displays the name, level, state and description of the fileset.

-h: Displays the installation and update history for the fileset.

-p: Displays requisite information for the fileset.

-d: Displays dependent information for the fileset.

-f: Displays the filenames added to the system during installation of the fileset.

-w: Lists the fileset that owns a file or files.

-R: specifies a user designated install directory.

-L: Displays extended listing.

Full syntax:

lslpp [-R { path | ALL }] { -d | -E | -f | -h | -i | -l | -L | -p } [-a] [-c] [-J] [-q] [-I] [-O { [r] [s]

 [u] }] [FilesetName ... | -b File | all]

lslpp [-R { path | ALL }] -w [-c] [-q] [-O { [r] [s] [u] }] [FileName ... | all]

lslpp [-R { path | ALL }] -L -c [-v]

lslpp [-R { path | ALL }] -S [A|O]

lslpp [-R { path | ALL }] -e

Examples:

Sometimes you need to find out whether one or more filesets are present on your system, for example

as a prerequisite for some other software. Then use "lslpp -h" as in the following example:

lslpp -h bos.adt.include bos.adt.l1b bos.adt.l1bm \

 bos.net.ncs 1for_ls.compat 1for_ls.base

In order to display the name, level, state of the "bos.adt.include" fileset, use

lslpp -l bos.adt.include

 Fileset Level State Description

 --

Path: /usr/lib/objrepos

 bos.adt.include 5.3.0.37 COMMITTED Base Application Development

 Include Files

In that command, you can use "wildcards" as well, as in:

lslpp -l "bos.adt.*"

In order to display all files in the inventory database which are related to the vmstat command, use

lslpp -w "*vmstat*"

You can create "long" listings with lslpp, which you can ofcourse "grep" on the information you want, like:

lslpp -l | grep -i Java

As explained in Chapter 1, the lslpp will query that part of the ODM database, which is related to filesets.

See chapter 1.

inutoc:

Creates a .toc file (table of contents file) for directories that have "installable" files or filesets.

Usually, you do not need to use inutoc. For example, if you have media from some manufacturer,

then you can just go ahead with the installation (with, for example, using smitty).

But suppose you have "just a number" of filesets, in some directory, and you know that you can install those,

then create a "table of contents" file first.

Per default, inutoc operates on the "/usr/sys/inst.images" directory.

But you can use inutoc on every location, by just specifying that location, like for example:

inutoc /tmp/install

installp:

The useage of the installp command is often an exam subject.

This command has nummerous flags. You should know the most important flags used with this command.

This command can ofcourse be run from the commandline, but many "smitty" software menu's will use it too.

installp -r # to reject applied updates.

installp -a # applies software.

installp -ac # applies and commit software.

installp -C # cleans up after an interrupted installation and removes all software pieces.

installp -d <device> # used to specify the device where to install from, like "/dev/cd0".

installp -F # forces the installalation, even if the same version already exists.

installp -l -d <device> # list all installable software on that device.

installp -L -d <device> # displays the contents of the media by looking at the table of contents (TOC).

installp -X # expand filesystems as necessary.

installp -e # logs to a logfile

installp -q # Specifies quiet mode, which suppresses the prompt for the device, except media volume change.

installp -Y # agrees to software license requirements. Only valid using the -a flag.

installp -u # Removes the specified software from the system.

installp -s # Gets a list of all applied software that can be committed or rejected.

installp -v # verifies the checksums after install. it can be an extra saveguard with a remote install.

installp -g # when used to install or commit, this flag automatically installs or commits,

 respectively, any software products or updates that are requisites of the specified software

 product. When used to remove or reject software, this flag automatically removes or rejects

 dependents of the specified software. The -g flag is not valid when used with the -F flag.

Examples:

To list all software products and all installable options on the cd0 device, use:

installp -L -d /dev/cd0

To commits all applied LPPs (or PTFs etc..), use:

installp -c -g -X all

The following installs those three filesets from cdrom:

installp -qaX -d /dev/cd0 bos.sysmgt.nim.master bos.sysmgt.nim.client bos.sysmgt.nim.spot

The following example installs all available filesets in the "/cdrom/usr/sys/inst.images" source directory

to the default locations, as specified in Filesets, and writes an installation log file to /tmp/install.log.

installp -aXYgd /cdrom/usr/sys/inst.images -e /tmp/install.log all

geninstall:

This is a generic installer that can install software products of various packaging formats, like

installp, RPM, SI, and ISMP.

Beginning in AIX 5L, you can not only install installp formatted packages, but also RPM and

Install Shield Mutli-Platform (ISMP) formatted packages. Use the Web-based System Manager,

SMIT, or the geninstall command to install and uninstall these types of packages.

The geninstall command is designed to detect the format type of a specified package and run the

appropriate install command.

Example:

geninstall -d /dev/cd0 all

If you using the geninstall command to install RPM or ISMP packages, use the prefix type to designate

to the geninstall command the type of package you are installing. In AIX 5L, the package prefix types

are the following:

I: installp format

R: RPM format

J: ISMP format

For example, to install the cdrecord RPM package and the bos.games installp package, type the following:

geninstall -d/dev/cd0 R:cdrecord I:bos.games

lppmgr: (specifically used at NIM)

Manages software in the "lpp_source" on the NIM master.

lppmgr is designed to perform the following functions on an existing installp image source

(also known as an lpp_source in the NIM environment):

Important flags:

-d: Directory or Device.

-u: Remove duplicate updates.

-b: Remove duplicate base levels.

 Thus eliminating updates which are the same level as bases of the same fileset. Such updates can create conflicts

 that lead to installation failure.

-k: Remove message and locale filesets other than the language you specify.

-x: Remove superseded filesets.

-r: Actually removes filesets, because the default will only lists what will be removed.

-X: Remove non-system images from a NIM lpp_source resource.

Example:

/usr/lib/instl/lppmgr -d /export/nim/6100/lpp_source -u -b -x -r

>> this will remove

-u = removes duplicate update images

-b = removes duplicate base images

-x = removes superceeded updates

-r = actually does the removal. If the ‘-r’ flag is not included, the lppmgr command will run in “preview mode”.

lppchk:

This command checks the current files of a program, or a filelist, against the

Software Vital Product Data (SWVPD) of the ODM (see also Chapter 1).

It will check for file sizes and checksum values, or symbolic links.

Most important flags:

-c Performs a checksum operation on the FileList items and verifies that the checksum and the file size

are consistent with the SWVPD database.

-l Verifies symbolic links for files as specified in the SWVPD database.

-v Does an extensive integrety check. All software products are registered in the ODM as consisting

of a root part, and a usr part. These SWVPD entries are crosschecked along with the existence

of the actual files on the filesystems.

Examples:

Complete integrety check:

lppchk -v

Check a package on checksums and filesizes:

lppchk -c X11.fnt

Chapter 8. Some keypoints on WPARs.

Please be aware that this chapter describes an AIX v.6 feature only.

This chapter contains really "minimal" information on WPARs, but it's likely

that it's all you need to know for the exam 223.

8.1 Conceptual Overview WPAR:

A WPAR is a software based 'entity', running within a AIX v.6 based LPAR.

A (system) WPAR behaves like an autonomous "virtual AIX machine", running within an AIX v.6 LPAR.

Since it is entirely software based, it has no relationship with the Power architecture, or firmware etc..,

and you do not need a HMC. It's a feature of AIX v6 only.

You can create, list, manage, start/stop, and remove them using the commandline, or smitty, and other tools.

WPAR is short for "Workload Partition". You may regard it as a sort of "mini AIX", running

within your LPAR. And, you might even create a number of autonomous WPARs within one AIX v6 based LPAR.

It is just as if you are "subsetting" your LPAR into a number of autonomous systems.

If you would have, say 5 independed WPARS running in a single LPAR, and if that LPAR suddenly

experiences a "serious problem", then all of your WPARS have a problem too.

That’s a bit of a dramatic scenario ofcourse, but it nicely illustrates how these "virtual machines"

are tied into that single LPAR.

But the following could be quite realistic: system maintenance on the LPAR can affect all WPARs.

Note:

However, a WPAR can be moved to another LPAR, where only a relatively short "freeze" time

is involved (called Application Mobility).

If you want to use this feature, the r/w filesystems of the WPAR must reside on a NFS Server.

Now, a physical machine like a p570 can be partitioned into several LPARS. In a AIX v6 based LPAR, you

can thus create WPARS, and thereby having even a higher degree of "partitioning".

If you want, you may go back to figure 4 of chapter 6. This figure "puts things into perspective".

In figure 4, you see an AIX v6 based LPAR, where a couple of WPARs are running in.

There a two types of WPARS:

- System WPAR: This resembles a "mini" AIX environment, with it's own r/w mounted filesystems, and daemons

like cron. Furthermore, it has it's own users and groups, and network features.

A system WPAR is persistent, until you stop it using the 'stopwpar' command.

- Application WPAR: This one is much more limited, and can be viewed as a 'wrapper' around a process,

thereby isolating it further. An Application WPAR starts and ends, when the app starts and ends.

Since the WPARs are running in a single LPAR, they use the resources of that LPAR.

In the context of WPARs, the parent LPAR is called the "global environment".

The following figure hopefully illustrates the relation of a parent LPAR and it's WPARs.

Fig. 18.

A system WPAR thus looks like a mini AIX environment. It has mounted file systems, private accounts, it's own set of daemons,

and even an "init" process (!), but it does not have it's own "kernel" or own devices. Those are inhereted

from the "parent LPAR".

In the following sections, whenever we talk about "global", like "global filesystems", it's meant to be the

filesystems from the parent LPAR (thus the global environment).

WPARs are certainly "great" for test- and development "streets". For production, you should be carefull.

A WPAR is dependent to the availability of the Hosting LPAR, although "Application Mobility" options do exist.

A WPAR is also about "Resource Control":

It's very easy to create a WPAR using the mkwpar command.

Here is an example:

570LP02:/root # mkwpar -n wpar1 -h wpar1 -N netmask=255.255.255.0 address=10.10.10.20 -r

This create as system WPAR, with an administrative name of "wpar1", and a hostname of "wpar1", and some

AIX v6
LPAR

global
environment

/

/usr

/var

/opt

/wpar/wpar1

/wpar2

system wpar WPAR2
- filesystems: /,/home,/opt,/var,/tmp
- has accounts
- has login facility
- can ssh
- daemons (cron, syslog)
- has a "init" process
- persistent environment
- multiple applications

Application wpar WPAR3
- starts and ends
with the "wrapped" application

- no accounts, no daemons, no login
- single application

system wpar WPAR1
- filesystems: /,/home,/opt,/var,/tmp
- has accounts
- has login facility
- can ssh
- daemons (cron, syslog)
- has a "init" process
- persistent environment
- multiple applications

network attributes are set as well.

Now let's start wpar1:

570LP02:/root # startwpar wpar1

If you want to login into this OS container, use the "clogin" command:

570LP02:/root # clogin wpar1

But since a WPAR is short for "Workload Partition", it should have a relation to setting "Workload Boundaries"

(in the context of Resource Control) as well.

Thus, we can expect that this sort of flags exists in the "mkwpar" command as well, like "CPU=x%-y%",

meaning a lower and upper bound of that resource (taken from the global environment).

Control at LPAR boottime:

The /etc/rc.wpars command invokes the startwpar command on all workload partitions with the autostart option.

This means that the WPAR was created using the "-A" flag with the mkwpar command, and thus means they are

"auto started" when the host OS (the AIX global enviroments) starts up.

8.2 Creating and managing WPARS:

8.2.1 Creating, and listing, WPARs:

To create a WPAR, you can use smitty, or the "mkwpar" command, or the webbased "WPAR Manager".

Using smitty:

570LP02:/root # smitty wpar

Or using the commandline:

570LP02:/root # mkwpar wpar1

That command would create a wpar, called "wpar1", with all the defaults that are associated with the mkwpar flags.

Most often, that is not what we want, so here are a few more realistic examples:

570LP02:/root # mkwpar -n wpar1 -h wpar1 -N netmask=255.255.255.0 address=10.10.10.20 -r

570LP02:/root # mkwpar -n wpar2 -h wpar2 -R active=yes CPU=10%-20%,50% totalProcesses=300

In the second example, you can see that we have used command options that limit the resource usage, like CPU,

and the maximum number of processes.

A (very) simplyfied version of the mkwpar command is:

mkwpar -n <wparname> -h <hostname> -d <base directory> -N <network attributes> -l -R attribute=value -A -s

-l makes a private copy of the global /opt and /usr and thus, makes them (in principle) writable to WPAR users.

-n designates the administrative WPAR name.

-h designates the "hostname" of this "mini AIX" system.

-d specifies a "base directory" for this workload partition. If you do not specify a directory name, /wpars/<wparname> is used.

 This is where "/home", "/tmp" etc.., are stored.

-A determines if an entry is recorded into the "/etc/rc.wpars" file (for autostart purpose).

-R attribute=value

With the "-R attribute=value", especially "Resource Control" parameters can be given on the command line.

For example:

CPU=m%-SM%,HM% Specifies the percentage processor limits for the WPAR.

memory=m%-SM%,HM% Specifies the percentage memory limits for the processes of the workload partition.

totalVirtMem=n[M|MB|G|GB|T|TB] Specifies the total virtual memory for the WPAR.

many more attributes are available.

Remarks about Filesystems:

By default, the file systems for a new system WPAR are located in the /wpars/wpar_name directory.

If you create a system WPAR (with the mkwpar) command, you would see output about creating and mounting

(private) filesystems, as well as copying fases of a number of AIX related filesets into the private directories.

With the "-d" flag in the "mkwpar" command, you can assign another "base directory" instead of the default of "/wpar".

Per default (not using the -l flag), the /usr and /opt file systems of the workload partition are mounted over the

global /usr and /opt file systems in read-only mode. These system related filesystems, are thus "shared".
But if you use the "-l' flag, then a private copy of the global /opt and /usr are created (using more diskspace).

An Example of creating wpars, and listing them:

Let's create a couple of WPARs, login, and list them from the global environment.

>> Create WPARs:

570LP02:/root # mkwpar -n wpar1 -h wpar1 -N netmask=255.255.255.0 address=10.10.10.21 -r

mkwpar: Creating file systems...

 /

 /home

 /opt

 /proc

 /tmp

 /usr

 /var

<< End of Success Section >>

FILESET STATISTICS

 241 Selected to be installed, of which:

 241 Passed pre-installation verification

 241 Total to be installed

+---+

 Installing Software...

+---+

Filesets processed: 6 of 241 (Total time: 2 secs).

installp: APPLYING software for:

 X11.base.smt 6.1.0.1
etc.. (much output omitted)

In the same way, we create WPAR "wpar2".

>> Start the WPARs:

Let's now start those 2 WPARs:

570LP02:/root # startwpar wpar1

570LP02:/root # startwpar wpar2

>> View the WPARs from the "global environment" (the LPAR):

From the Host OS, that is, the global environment (the LPAR), use the "lswpar" command

to view the state of the WPARs:

570LP02:/root # lswpar

Name State Type Hostname Directory

wpar1 A S wpar1 /wpars/wpar1

wpar2 A S wpar2 /wpars/wpar2

570LP02:/root #

As you can see from this output, both WPARs are "active" (State=A), and they are "system WPARs (Type=S)".

Also, the base directories are "/wpars/<wpar_name>"

>> Login in a WPAR:

let's login to "wpar1"

570LP02:/root # clogin wpar1

* *

* *

* Welcome to AIX Version 6.1! *

* *

* *

* Please see the README file in /usr/lpp/bos for information pertinent to *

* this release of the AIX Operating System. *

* *

* *

#

Many familiar commands like "ps -ef", "df" etc.., can be entered and those commands

only "applies" to that WPAR.

8.2.2 Starting and stopping a WPAR:

-- Start / Stop an individual WPAR.

You can star/stop a WPAR from the global environment using the startwpar/stopwpar commands.

To start a system WPAR, run the following command in the global environment:

startwpar wpar_name

For example:

570LP02:/root # startwpar wpar1

To start a system WPAR in maintenance mode, run the following command in the global environment:

startwpar -m wpar_name

This starts the WPAR with all functionality, except for networking, so external user access is not possible.

To stop a WPAR, use the stopwpar command, as in the following example:

570LP02:/root # stopwpar wpar1

To "halt" or "abort" a WPAR, use the -F flag as in:

570LP02:/root # stopwpar -F wpar1

-- Global setting: starting WPARs when the LPAR boots:

If you use the "-A" flag in the mkwpar command, an entry is added in the "/etc/rc.wpars" file.

This file determines which wpars should auto start when the LPAR is booted.

The "/etc/inittab" file (which determines part of the bootprocess) contains a record to execute the "rc.wpars" file.

Chapter 9. Some keypoints on boot and shutdown.

9.1 Activating an LPAR from the HMC, and boot "normally", or boot to "SMS":

You can activate an LPAR, and boot the OS, from the graphical interface available on the HMC.

Usually, you will let the LPAR boot "normally", but sometimes you want to enter the SMS (System Management Service) menu.

Suppose a partition is in the "Not Activated" state.

From the HMC, rightclick the partition and choose "Activate".

Fig. 19.

Next, you are able to select a 'profile'. At the very least, the default profile for this LPAR exists.

If more profiles exist, they are shown here, and you can select the one you want to use right now.
In the same screen, check the "Open a terminal window or console session". After that, click the "Advanced" button.

Fig. 20.

After clicking "Advanced", you can see that you can choose a "Bootmode".

- The most common option here, is "Normal", which normally would be used. It will just start the OS

 that's installed in the LPAR.
- Another important option is, that you can boot into the SMS menu. That menu will enable you

 (among other things) to perform maintenance (like recovery of rootvg).

Fig. 21.

In the figure above, suppose we choose the SMS menu. After a short while, the SMS menu appears:

Main Menu:

 1. Select Language

 2. Setup Remote IPL (Initial Program Load)

 3. Change SCSI Settings

 4. Select Console

 5. Select Boot options

Type the number of the menu item and press Enter:

Let's demonstrate the use of this bootoption.

Suppose you want to boot from the AIX installation DVD.

Then, from the above SMS menu, choose 5 "Select Boot Options".

Then, press the 1 key and press Enter to select 1. "Select 1st Boot Device".

Ten press the 3 key and press Enter to select option 3, which is the (local) CD/DVD device.

Booting from DVD: How to start the installation of AIX, or go to Sytem Recovery options.

Let's alreay take a look how we could install AIX, or enter the "recovery options", if we would boot from

the AIX installation DVD (Volume 1).

Browse the above SMS menu system a bit more, until you are able to make the CD/DVD device the first bootable device.

After the next boot (from the AIX DVD Volume 1), you will see the following menu:

 Welcome to Base Operating System

 Installation and Maintenance

Type the number of your choice and press Enter. Choice is indicated by >>>

 1 Start Install Now with Default Settings

 2 Change/Show Installation Settings and Install

 3 Start Maintenance Mode for System Recovery

 4 Configure Network Disks (iSCSI)

 88 Help ?

 99 Previous Menu

>>> Choice [1]: 3

As you can see, here you can choose to install the OS, or you can choose "Start Maintenance Mode for System Recovery".

Please refer to the next chapter for more information. This chapter only deals with bootoptions.

9.2 HMC commands for Start/Stop, or altering boot behaviour of an LPAR:

See also section 6.3, for an explanation of the relation of the HMC with an LPAR.

Alongside the graphical activation options, using the HMC, you can also use the commandline from the HMC.

Here, you can find a few examples:

1. To shutdown a certain LPAR on a managed system, you can use a command similar to this example:

hscroot@hmc-op:~> chsysstate -r lpar -m pSRV570 -o shutdown -n N05LP04

2. To boot a certain LPAR on a managed system, you can use a command similar to this example::

hscroot@hmc-op:~> chsysstate -r lpar -m pSRV570 -o on -n N05LP04 -f profile

3. To perform a partition boot into SMS you can use a command similar to this example::

hscroot@hmc-op:~> chsysstate -r lpar -m pSRV570 -o on -n N05LP04 -f profile -b sms

4. To perform a partition boot into open firmware OK prompt, use a command similar to this example:

hscroot@hmc-op:~> chsysstate -r lpar -m pSRV570 -o on -n N05LP04 -f profile -b of

In these examples:

- the managed 'system p' system is "pSRV570"

- the LPAR is "N05LP04"

(Quite some more boot/shutdown HMC commands exists).

9.3 AIX "boot related" commands:

Next, we will discuss (in a lightweight fashion) some important AIX boot related commands.

9.3.1 The bootlist command:

The "bootlist" command (used from the AIX commandline) let's us view, or change, the list of bootable devices.

If the system just boots from local private devices (like a local hdisk0), the below theory is probably allright.

IMPORTANT: depending on the system model, other constraints may exist for a local disk to be bootable.

And, in modern complex systems with the use of VIOS and virtualized scsi, with or without a SAN, or other

complex storage, the below theory could fail. It just depends on the configuration.

In many cases, the first admins who have setup the systems, have found out "the hard way", how it really works

in that particular environment. Anyway, the basic theory is this:

At boottime, once the POST is completed, the system will search the boot list for a

bootable image. The system will attempt to boot from the first entry in the bootlist.

Its always a good idea to see what the OS thinks are the bootable devices and the order of what the OS

thinks it should use.

The purpose is ofcourse, to find a "boot logical volume" (blv), to boot the system (usually the LPAR) from.

The blootlist itself, is stored in nvram (non volatile ram), and contain entries to actual bootable devices.

Viewing the bootlist: (should be no problem);

bootlist -m normal -o # -m specifies which bootlist to display: for "normal" boot, or for "service" boot.

hdisk0

hdisk1

As the first item returned, you see here hdisk0 listed, which is a bootable harddisk.

If you need to check the bootlist in "service mode" (a special bootoption, more on that later), use:

bootlist -m service -o

Changing the bootlist: (you have to be carefull: it cannot be done on all systems)

If you have a relatively "simple" configuration, using a local private disk for booting the system,
and there exists other local private disks (or devices), then changing the bootlist is probably simple.

That is not to say that it can't be done with virtualized scsi or "remote devices",
but we just can't let simple commands be representative for all cases. It just can't !

The bootlist, (in normal operations, at least for local private devices), can be changed using

the bootlist command, like for example:

bootlist -m normal hdisk0 cd0

This command makes sure the hdisk0 is the first device used to boot the system, and secondly, from cd0.

bootlist -m normal hdisk0 hdisk1

This command makes sure the hdisk0 is the first device used to boot the system, and could use hdisk1 as well.

It works this way: If no blv is detected on the first device, the system moves on

to the next device in the list.

If you want to change the bootlist for the system in service mode, you can change the list in order to use rmt0,

for example, if you need to restore the rootvg from a tape mounted in rmt0.

bootlist -m service rmt0

Thus take notice of the keywords "normal" (thus normal boot) and "service" (boot to SMS).

For easy reference, here is the full syntax of the "bootlist" command:

bootlist [{ -m Mode } [-r] [-o] [[-i] [-V] [-F]| [[-f File] [Device [Attr=Value ...] ...]]] [-v]

-m Specifies which boot list to display or alter. Like, as we have seen: "normal" and "service", but "both",

 'or "prevboot" exists as well.

-o Indicates that the specified boot list is to be displayed after any specified alteration is performed.

 The output is a list of device names.

9.3.2 The "bosboot" command:

The "bosboot" command usually is used to create a bootimage on a bootable device.

So, as a simplistic example, if hdisk0 must be bootable, or you want to be sure its bootable, use

bosboot -ad /dev/hdisk0

-a Creates a complete boot image

-d let's you specify which device you want to make bootable.

You should also (if needed) update the list of bootable devices, using the "bootlist" command.

On a local disk, the boot logical volume is "hd5".

Here too, a warning can't hurt.

In a relatively simple environment with a couple of private local disks, there should not be problems.

In a complex environment, using SAN, virtualized scsi, or other types of storage, it may not be that simple

as the above example suggests.

The bosboot command uses "/tmp" for processing, so if /tmp is too small, bosboot can fail.

ofcourse, that can be fixed easily.

In some rare cases, the new bootimage could be too large, to store in the presently sized BLV. This could happen

on older disks with a small partition size.

An other reason may be that the ODM files have grown so large, that "savebase" cannot store copies on the bootdisks.

(See chapter 10)

9.4 Shutdown of an AIX LPAR:

As shown in fig 17, from the GUI on the HMC, if you rightclick an LPAR, you are able to

"shutdown" a Partition (along with other options).

By far, the best way to orderly shutdown an AIX operating system, is doing that from a session in the OS,

using appropriate commands.

If you do that, stop scripts will run and filesystems will be cleanly unmounted.

You can use the init, halt, reboot and shutdown commands to stop the AIX Operating System.

The "best" command to use is the shutdown command.

The "/etc/rc.shutdown" file:

If you need a customized shutdown sequence, you can create a file called /etc/rc.shutdown.

If this file exists, it is called by the shutdown command and is executed first.

This can be usefull for example, if you need to close a database prior to a shutdown.

If rc.shutdown fails (non zero return code value), the shutdown cycle is terminated.

Here is an example of a "rc.shutdown" file:

#cat /etc/rc.shutdown

#!/bin/ksh

stop Control-SA/Agent

/etc/rc.ctsa stop

/etc/rc.mwa stop

/etc/rc.opc stop

Stop TSM dsmcad en scheduler

/etc/rc.dsm stop

Stop TSCM client

/opt/IBM/SCM/client/jacclient stop

Stop App servers

/etc/rc.ihs stop

/etc/rc.ihs stop des

/etc/rc.appserver stop APPSRV1

/etc/rc.nodeagent stop

/etc/rc.dmgr stop

Stop db2 instances

/etc/rc.db2_udb stop all

Stop Oracle instance

export ORACLE_SID=sales

sqlplus /nolog <<EOF

connect / as sysdba

shutdown immediate;

exit 0

EOF

exit 0

As you can see, many specific rc scripts are called, or other commands are issued,

to stop different applications or services.

The shutdown command:

Per default the shutdown command will send a message (using 'wall" command) of the impeding shotdown to all users,

unless the "-F" flag is used. The default "wait time" before the shutdown actually starts, is 60 seconds.

The "-F" flag will omit the message and waittime (so it's a fast shutdown).

Here are a few examples using the shutdown command:

If you interactively will use the shutdown command, you might consider go to the "/" fileystem first,

so that you will not "hold" any filesystems.

To shutdown the system (no restart) and using the default of the message and one minute wait, use:

shutdown

To shutdown the system (no restart) and using the default of the message and two minutes of wait, use:

shutdown +2

Bring the system from multi-user mode to maintenance mode, use

shutdown -m

To restart the system, use

shutdown -r

To restart the system, where no message is send and there is no one minute waittime

shutdown -Fr

When using shutdown, the system stops the accounting and error logging processes and writes an entry to the error log.

The shutdown command then runs the killall command to end any remaining processes and runs the sync command

to flush all memory resident disk blocks. Finally, it unmounts the file systems and calls the halt command.

Chapter 10. Some keypoints on Backup & Restore.

Here we can distinguish between "system related" backups (like "mksysb" which backups the rootvg), and "user related"

backups, where for example a user might create a backup of some filesystem (or directory),

using the "backup" or "tar" command.

The first "category" makes backups of system related items.

The second category, makes backups of user data or applications. Here we call them "the standard commands".

We don't need to make this "two way distinction": You may also say that there exists just a number of backup commands,

where each might be more appropriate to use in a certain situation.

10.1 System related backup and recovery:

Warning: Presented below, is only the "general" theory. No doubt in reality (on your systems),

it all will work "somewhat" different. If you haven't already done so, you should test

restores of mksysb backups on representative test lpars.

10.1.1 Creating a mksysb backup of the Operating System:

With "mksysb", you can create a bootable tape which contains all information to restore your AIX Operating System.

But you can use mksysb also to create a file, containing that data.

In other words: mksysb creates an installable image of the root volume group either in a file or onto a bootable tape.

If you backup to file, that file by itself is not bootable, but you could use it in a Network based install (NIM).

So, since it is a means to restore your complete OS (onto a LPAR, or system), AIX sysadmins will create a
mksysb backup either on a regular basis (e.g.: once a week), and before (and after) any fundamental change

occurs on the system, like installing a "Service Pack", or Technology Level update.

The mksysb command creates an installable image of the rootvg. This is synonym to say that mksysb creates

a backup of the operating system (that is, the root volume group).

The following is created:

The tape format includes a boot image (1), a bosinstall image (2), and an empty table of contents (3),

followed by the system backup (root volume group) image (4).

Below is a figure depicting those 4 "area's" or files.

Further more, mksysb will store an "image.data" file, and a "bosinst.data" file, on that tape.

- image.data: a file that describes the LV's and filesystems in rootvg

- bosinst.data: a control file for the bosinstall image.

You can use this backup to reinstall a system to its original state after it has been corrupted.
If you create the backup on tape, the tape is bootable and includes the installation programs

needed to install from the backup.

Examples:

To generate a system backup and create an /image.data file (generated by the mkszfile command) to a tape device

named /dev/rmt0, type:

mksysb -i /dev/rmt0

If a backup tape was created with the -e switch, like in:

mksysb -i -e /dev/rmt0

then a number of directories are NOT included in the backup. These exclusions are listed in the "/etc/exclude.rootvg" file.

The -i flag will call the "mkszfile" command, which produces the file "/image.data".

This file includes the sizes, names, maps, and mount points of logical volumes and file systems in the root volume group.

It will then be included in the mksysb backup.

To create a mksysb backup to a file, use a command similar to:

mksysb -i /backups/system/n05lp06

This creates the file "n05lp06", which is a mksysb backup to a file. You could use it at a "NIM" based installtion.

The file-system image is in backup-file format, that is, it's the format as used with the AIX "backup" command.

The tape format includes a boot image, a bosinstall image,

and an empty table of contents followed by the system backup (root volume group) image. The root volume group image

is in backup-file format, starting with the data files and then any optional map files.

Conceptual view of a mksysb backup:

There will be four images on the mksysb tape, and the fourth image will contain ONLY rootvg JFS or JFS2

mounted file systems. The target tape drive must be local to create a bootable tape.

The following is a conceptual view of mksysb's four images.

Fig. 22.

 <---------- block size 512 b --------> default

blocksize

bosboot image mkinsttape
image

Dummy TOC
image

rootvg data

10.1.2 Restoring the full (or parts of a) mksysb backup:

Full Restore of a mksysb:

This is actually saying that you are going to restore rootvg from a mksysb backup.

One way to do that is the following.

If your system or lpar can use a tapedevice, either it currently owns it, or it can use the rmt of the HMC,

proceed as follows:

-Insert the mksysb tape

-Power on the machine. The system will boot from the tape.

-The Installation and Maintenance Menu will be displayed.

 Welcome to Base Operating System

 Installation and Maintenance

Type the number of your choice and press Enter. Choice is indicated by >>>.

 1 Start Install Now with Default Settings

 2 Change/Show Installation Settings and Install

>>> 3 Start Maintenance Mode for System Recovery

Type 3 and press enter to start maintenance mode.

 The next screen you should see is :-

 Maintenance

Type the number of your choice and press Enter.

>>> 1 Access a Root Volume Group

 2 Copy a System Dump to Removable Media

 3 Access Advanced Maintenance Functions

 4 Install from a System Backup

>>> Choice [1]:

Type 4 and press enter to install from a system backup.

Restore individual files from a mksysb backup:

As you can see from figure 22, the fourth file of the mksysb backup contains the rootvg data,

in the "backup" format (that is, the format that the backup command use).

You can also say that it's the third file, counting from "0".

You can restore files from a backup created using the "backup command", with the "restore command".

Suppose that you want to restore the file "/etc/filesystems" from the mksysb tape.

Proceed as follows:

cd / # get to the root directory

tctl -f /dev/rmt0 rewind # rewind the tape

tctl -f /dev/rmt0.1 fsf 3 # move the tape to the third file, no rewind (counting from 0)

restore -xqf /dev/rmt0.1 -s 1 ./ect/filesystems # extract the filesystems file

Further explanation why you must use the fsf 3 (fast forward skip file 3):

The format of the tape is as follows:

1. A BOS boot image

2. A BOS install image

3. A dummy Table Of Contents

4. The system backup of the rootvg

So if you just need to restore some files, first forward the tape pointer to position 3, counting from 0.

You can also restore a complete directory from the mksysb image. Use a command similar to:

restore -xvdf <mksysb.image> ./your/directory

The dot at the front of the path is important.

The "-d" flag indicates that this is a directory and everything in it should

be restored. If you omit that, you'll restore an empty directory.

The directory will be restored underneath whatever directory you're in. So

if you're in your home directory it might create:

/home/albert/your/directory.

So that's why you probably will go to the "/" root first.

Restore of a mksysb from a mirrored rootvg, to a new rootvg of 1 Physical Volume:

In reality, nummerous problems can popup (I don't want to be "dramatic" here, but in my experience,

somehow it always does).

That's why you certainly must test mksysb restores on testmachines.

One common problem is this one:

The "image.data" file, consists of a description of all LV's, filesystems and mounts in the rootvg.

If your source rootvg was mirrored, but you need to use the mksysb on a rootvg consisting of only one PV,

then you might use this trick (before any mishap happens).

So, if you ever suspect that you have to restore to a rootvg of only one disk, do this:

- create a 'image.dat' file in the root filesystem using:

mkszfile

- Edit the "/image.data" file, and change the copies from "2" to "1".

- Create a mksysb tape, but without invoking mkszfile, so that the creation of "/image.data" is skipped;

mksysb /dev/rmt0

This time, you have a mksysb tape, using your customized stanza file.

10.1.3 The image.data and bosinst.data files:

The image.data file:

The mkszfile command creates the "/image.data" file. Also, if you run mksysb using the -i flag,

it will call the "mkszfile" command.

This file includes the sizes, names, maps, and mount points of logical volumes and file systems in the root volume group.

It will then be included in the mksysb backup.

The bosinst.data file:

This file controls the AIX installation. It can also be used as an "answerfile" for a non-prompted installation.

Below is an example of a bosinst.data file:

control_flow:

 CONSOLE = Default

 INSTALL_METHOD = overwrite

 PROMPT = no

 EXISTING_SYSTEM_OVERWRITE = yes

 INSTALL_X_IF_ADAPTER = yes

 RUN_STARTUP = yes

 RM_INST_ROOTS = no

 ERROR_EXIT =

 CUSTOMIZATION_FILE =

 TCB = no

 INSTALL_TYPE =

 BUNDLES =

 RECOVER_DEVICES = no

 BOSINST_DEBUG = no

 ACCEPT_LICENSES = yes

 DESKTOP = NONE

 INSTALL_DEVICES_AND_UPDATES = yes

..

target_disk_data:

 PVID =

 CONNECTION =

 LOCATION =

 SIZE_MB =

 HDISKNAME = hdisk0

As we already know, running "mksysb -i" will invoke mkszfile to create the "/image.data" file.

The other data file that mksysb uses, is the "/bosinst.data" file. If a /bosinst.data file does not exist,

/var/adm/ras/bosinst.data is copied to "/". mksysb will always updates the target_disk_data stanzas in bosinst.data

to match the disks currently in the root volume group of the system where the mksysb command is running.

If you are using a customized /bosinst.data file and do not want the target_disk_data stanzas updated,

you must create the file "/save_bosinst.data_file".

The mksysb command then does not update /bosinst.data if the "/save_bosinst.data_file" exists.

Ofcourse, you can create that file using:

cd /

touch save_bosinst.data_file

10.1.4 make a copy of a Logical Volume (filesystem) using "cplv":

Please see section 1.3.

10.1.5 Backup and Restore of complete Volume Groups:

The "rootvg" volume group, should be saved using the mksysb command.

But on a machine, or lpar, you might have several Volume Groups.
If you want to backup a complete Volume Group, you can use the "savevg" command.

To restore such a backup, use the "restvg" command.

savevg:

The VG must be varied on, and the filesystems should be mounted.

The savevg and restvg commands usually use a datafile, a sort of listfile (that resembles the "image.data" file

as is used with the mksysb command), that describes the VG.

Per default, that datafile is stored as "/tmp/vgdata/<vgname>/<vgname>.data".
So, suppose you have a VG named "applvg", this data file would be "/tmp/vgdata/applvg/applvg.data".

This file will be created by the "mkvgdata" command, which is called by "savevg" if the "-i" flag is used.

The full syntax is:

savevg [-a] [-A] [-b Blocks] [-e] [-f Device] [-i | -m] [-p] [-r] [-v] [-V] [-X] VGName [-Z]

The savevg command can use two important switches (among many other switches):

-i Creates the data file by calling the mkvgdata command.

-f Specifies the device or file name on which the image is to be stored. The default is the /dev/rmt0 device.

So, if you use the "savevg" command with -i switch, the mkvgdata command is called,

which will create the datafile. Since that file should exist anyway, you probably will always use that switch.

And, with "-f" you can specify your backup destination, which can be a tape or a file.

Examples:

savevg -if /dev/rmt0 applvg # backups applvg to tape.

savevg -if /home/vgbackup datavg # backups datavg to a file.

restvg:

You can restore a backup of a VG that was created with the 'savevg' command, by using the 'restvg' command.

As you have seen in the former section, the 'savevg' command creates a 'datafile' which also describes

on which physical disks (PV's) the Volume Group is located.

The restvg command will per default use the same datafile, and will restore on the same physical disk(s).

But you could override that with the "DiskName" parameter.

The full syntax is:

restvg [-b Blocks] [-d FileName][-f Device] [-l] [-q] [-r] [-s] [-n] [-P PPsize] [DiskName ...]

DiskName : Specifies the names of disk devices to be used instead of the disk devices listed in the vgname.data file.

-d FileName : this file will be used as the vgname.data file instead of the one contained within

 'the backup image being restored.

-f Device : specifies the Device name of the backup media.

-l : displays useful information about a volume group backup.

-n : specifies that the existing MAP files are ignored.

-P PPsize : specifies the number of megabytes in each physical partition.

-q : specifies that the usual prompt not be displayed before the restoration of the volume group image.

-r : recreates a volume groups structure only.

-s : specifies that the logical volumes be created at the minimum size possible to accommodate the file systems.

Examples:

restvg -f /dev/rmt1 hdisk2 hdisk3 # This command restores the volume group image from the /dev/rmt0 device,

onto hdisk2 and hdisk3. So the DiskNames used, overrides

the disks specified in the <vgdata.data> file.

restvg -f /home/vgbackup # This command restores the volume group from the specified file, and uses

the default datafile which describes the volume group, like which physical disks

are used.

10.2 Some remarks about the standard backup & recovery commands.

Most commands in the section, are not specific to AIX. For example, the "tar" command can be found on any unix.

Contrary, a few commands are quite specific to AIX, like the "backup" and (the related) "restore" commands.

tar:

This is one of the old friends, of anyone working on unix.

You can create a good backup of objects (usually some whole directory with possible subdirectories), using the "tar" command.

It saves not only files and directories, but ownership and permissions (filemodes) as well.

It's most important flags are:

 -c create

 -r append

 -x extract

 -v verbose

 -t list

 -f specify device (tape, file on disk)

 -z if, while extracting, it was zipped as well, as in "file.tar.gz"

Examples:

tar -cf /backups/john.tar /home/john # creates a tar file "john.tar" from the whole contents in "/home/john"

tar -cf /dev/rmt0 /home/john # creates an archive on tape from the whole contents in "/home/john"

tar -tvf /tmp/example.tar # list contents of example.tar to the screen

tar -xvf /dev/rmt0 /home/john # extract the archive on tape to /home/john

tar -xvf /dev/rmt0 /tmp/appl.zip # just restore one file from tape

tar -xvf data.tar # extract, or untar, data.tar

Note: using the "-" is not neccesary.

cpio:

It uses one of three "modes":

copy-out : cpio -o to backup

copy-in : cpio -i to restore

passthrough : cpio -p to pass files from one 'place' to another 'place'

Example of a "copy in":

Suppose you have the backup file "disk1.cpio" , and you need to restore (extract) it on a filesystem.

cpio -idmv < disk1.cpio

Example of a "passthrough":

This is really a good application of the cpio command.

Some people use the "cp -R" command to copy a tree from one place to another place on the filesystems.

But, using cp, you can copy the files and dirs allright, but you loose ownership information.

Much better is using cpio, because it preserves all permissions and owners.

Suppose you have a directory (or filesystem) "/data/dira" and you want to copy it fully to "/backup/dira",

then use a command like:

cd /data/dira

find . | cpio -pdvm /backup/dira

backup and restore commands:

These commands are specific for AIX, although some other unixes have those as well.

I would say that these commands are the preferred way to "backup" and "restore" files and directories on AIX.

I think that this is especially true, if you backup a directory tree (on some filesystem) to another filesystem.

But ofcourse, you can backup to tape as well.

Ownership and filemodes (permissions) are preserved.

If you backup a directory tree to another filesystem (or directory), a backupfile will be created in that directory.

Note: The 3rd file (counting from 0) on mksysb tape (which is rootvg), is in the backup format.

There are a few important things to know here:

The -i flag: - Without this flag, the command will backup by I-node.

 There are some issues here, for example that the source filesytem should be unmounted.
 Using the -i flag means that you just want to backup by name (instead of I node), which usually

 is the best way to go, unless you want to create a full and incremental backup policy.

The -f flag: - Specifies the device to backup to, like /dev/rmt0

The -u flag: - You can create full and incremental backups as shown in later examples.

 When the -u flag is used with the backup command, the system will do an incremental backup

 according to the -level number specified. For example, a level 5 backup will only back up the

 data that has changed after the level 4 was made.

 Levels can range from 0 to 9. But the -u flag applies only to backups by i-node.

 Using the -u flag, also will update the "/etc/dumpdates" file with information about the backup.

The -v flag: - As usual, this means verbose output (on screen or to logfile)

The -q flag: - Using this flag means to backup that the destination is ready. Otherwise you will

 be prompted to press Enter.

So, creating a full backup by name (instead of I-node) means that you will always use the -ifvq flags.

The backup command can be used 'as is', but it is also often used with "find", where find produces

a list of all files (including in subdirs) and using "|" it will be piped to "backup" which will deal with them further.

Examples:

By I node:

backup -0 -uf /dev/rmt0 /data # On Sunday: backup by I node, incremental level 0

backup -1 -uf /dev/rmt0 /data # On Monday: backup by I node, incremental level 1

By name:

cd /data

find . | backup -ifvq /dev/rmt0

cd /data

find . | backup -iqf /backups/data/data_01012009.backup

Here is a restore example:

restore -xdvqf /backups/savedata/data_010109.backup

pax:

The pax utility supports several archive formats, including tar and cpio.

The syntax for the pax command is as follows:

pax <mode> <options>

-r: Read mode. When -r is specified, pax extracts the filenames and directories found in the archive.

 The archive is read from disk or tape. If an extracted file is a directory, the hierarchy

 is extracted as well. The extracted files are created relative to the current directory.

-w: Write mode. If you want to create an archive, you use -w.

 Pax writes the contents of the file to the standard output in an archive format specified

 by the -x option.

-rw: Copy mode. When both -r and -w are specified, pax copies the specified files to

 the destination directory.

When neither -r or -w is specified, pax displays the filenames and directories

found in the archive file. The list is written to standard output.

-a = append to the end of an existing archive

-b = block size, multiple of 512 bytes

-c = you can specify filepatterns

-f = specifies the pathname of the input or output archive

-p <string> = aemo

a does not preserve file access time; e preserve everything: user id, group id, filemode bits; m does not preserve

 file modification times;

o preserve uid and gid

Examples:

To copy current directory contents to tape, use -w mode and -f

pax -w -f /dev/rmt0

To list a verbose table of contents stored on tape rmt0, use None mode and f

pax -v -f /dev/rmt0

To copy the olddir directory hierarchy to newdir, enter:

pax -rw olddir newdir

dd:

The dd command is more likely for sysadmins to use, but the basics of this command is the following.
dd is used to copy just a specified number of bytes or blocks (possibly performing on-the-fly byte order conversions).

It is quite special also, because it can copy raw diskdevices as well.

In it's most simplistic form, the syntax is:

dd if=<input file> of=<output file> <option=value>

Obviously "if" specifies the source, and "of" specifies the backup.

Some of the most important options to specify on the commandline are:

bs=blocksize Specifies both the input and output block size.

skip=number Skips the specified number of input blocks before starting to copy.

seek=number Specifies the starting record to copy from after the specified skipped blocks.

count=number Copies only the number of input blocks specified by that value.

Examples:

dd count=1 bs=4k skip=31 seek=1 if=/dev/hd4 of=/dev/hd4 # copy one block to another block on hd4; actually copying

 the superblock in this example

dd if=/dev/rmt0 ibs=1024 obs=1024 of=/dev/rmt1 # copy the tape in rmt0 to a tape in rmt1

dd if=/dev/raw_LogicalVolumeName of=/dev/rmt0 # copy a raw LV to tape

Chapter 11. Some keypoints on logging and diagnosing.

11.1 The errdemon, errlog, and the "errpt" reporting tool:

This section deals on how to view the OS, hardware, and software errors on your system or LPAR.

The error reporting tool "errpt":

Your primary source of viewing event- and errorlogging, is using the "errpt" command.

This shows you errors and warnings (and informational records) related to the system (the OS and hardware).

If you use the "errpt" command without any flags or options, it produces a summary report

of all events. Here is an example:

errpt # Or use "errpt | more", because the list might be so long that's it better to pipe it to "more".

IDENTIFIER TIMESTAMP T C RESOURCE_NAME DESCRIPTION

0EC00096 0130224007 P U SYSPFS STORAGE SUBSYSTEM FAILURE

0EC00096 0130223507 P U SYSPFS STORAGE SUBSYSTEM FAILURE

F7DDA124 0130223507 U H LVDD PHYSICAL VOLUME DECLARED MISSING

52715FA5 0130223507 U H LVDD FAILED TO WRITE VOLUME GROUP STATUS AREA

CAD234BE 0130223507 U H LVDD QUORUM LOST, VOLUME GROUP CLOSING

613E5F38 0130223507 P H LVDD I/O ERROR DETECTED BY LVM

BFE4C025 0130161207 P H sysplanar0 UNDETERMINED ERROR

0EC00096 0130161207 P U SYSPFS STORAGE SUBSYSTEM FAILURE

BFE4C025 0130161107 P H sysplanar0 UNDETERMINED ERROR

FEC31570 0130161107 P H sisscsia2 UNDETERMINED ERROR

The "identifier" like "0EC00096", can be used to "zoom in" into a detailed report of such a record, like for example:

errpt -aj BFE4C025 | more # The output usually is long, so use pipe it to "more"

This produces a report on that particular error record.

If there are more records with the same identifier, the command will show the reports,

starting from the most recent, up to the oldest one.

here is a sample output:

LABEL: SCAN_ERROR_CHRP

IDENTIFIER: BFE4C025

Date/Time: Sat Apr 25 20:06:22 ZOM 2009

Sequence Number: 1110

Machine Id: 00CDA84C4C00

Node Id: starboss

Class: H

Type: PERM

Resource Name: sysplanar0

Resource Class: planar

Resource Type: sysplanar_rspc

etc..

The errdemon:

Suppose you retrieve a listing of the processes, you will also see the 'errdemon':

ps -ef

 UID PID PPID C STIME TTY TIME CMD

..

 root 4198 1 0 Oct 17 - 0:00 /usr/lib/errdemon

..

This process is indeed responsible for maintaining the errorlog.

If you want to see some details about that errorlog, use the following command:

/usr/lib/errdemon -l

Error Log Attributes

--

Log File /var/adm/ras/errlog

Log Size 1048576 bytes

Memory Buffer Size 8192 bytes

So, the default errorlog is "/var/adm/ras/errlog".

To manual stop and start the daemon:

/usr/lib/errstop

/usr/lib/errstart

The errclear command:

You can truncate (remove all records) the errorlog with the following:

errclear 0

To delete all entries in the error log classified as software errors, enter:

errclear -d S 0

-d specifies the record types as H (hardware), S (software), O (errlogger messages), and U (undetermined).

To delete all entries in the error log classified as software errors an older than 30 days, enter:

errclear -d S 30

The logfile can be manually cleared using the "errclear" command. However, ususally root has one ore

more crontab jobs which will clear the log in a certain way. Take a look at the following crontab entries:

0 11 * * * /usr/bin/errclear -d S,O 30

0 12 * * * /usr/bin/errclear -d H 90

The above example means that Software related entries, older than 30 days, are cleared.

Also, all other entries older than 90 days are cleared from the log.

errlogger command:

Sometimes you may want to place some text or comment in the errlog, for eaxmple, after an repair.

You can do that with the "errlogger" command, like in:

errlogger The fibercard was replaced.

How the daemon works:

The ODM contains the configuration database for the errorlogging mechanism.

It is the file:

/etc/objrepos/SWservAt

The kernel (diagnostic extension, or device driver) writes error information to the special file "/dev/error".

The errdemon continuously keep watching this file.

Before an entry is written to the error log, the errdemon daemon compares the label sent by the kernel or application

code to the information (templates) in the ODM Repository. If there is a match, the daemon collects

additional data.

Before an entry is written to the log, the errdemon daemon retrieves the appropriate template from the repository,

the resource name of the unit that detected the error, and detail data.

Then, an entry is written in the errlog.

11.2 The utmp, wtmp and failedlogin files:

The utmp file, the wtmp file, and the failedlogin file contain records with user and

accounting information. When a user successfully logs in, the login program

writes entries in two files.

- The /etc/utmp file, contains a record of users logged into the system.

 The "who" command uses the information from /etc/utmp file.

- The /var/adm/wtmp file, contains connect-time accounting records.

 The "last" command will use this file, to show you the historical login and logout info, since the last reboot.

- On an invalid login attempt, due to an incorrect login name or password, the login
 program makes an entry in the /etc/security/failedlogin file, which contains a

 record of unsuccessful login attempts.

Use the "last" command to get a historical view of logins/logouts, connecttime, and the used terminal.

last | more

Use the who command to read the contents of the /etc/security/failedlogin file:

who /etc/security/failedlogin

who /etc/security/failedlogin > /tmp/failed_login.txt

- Shutdown:

The "acctwtmp" command also writes special entries in the /var/adm/wtmp file concerning

system shutdowns and startups.

11.3 The "alog" command, and various other (alog) logs:

bootlog and console log:

Messages generated during the AIX boot, are stored on disk. Also, during runtime, messages might be send to the console

You can use the alog command to view various logs,

alog -L # List the defined log types

alog -o -t boot # View the boot log

alog -o -t console # View the console log

You may also use:

alog -f /var/adm/ras/bootlog -o | more

alog -f /var/adm/ras/conslog -o | more

The logfiles themselves are thus:

"/var/adm/ras/bootlog" The bootlog

"/var/adm/ras/conslog" The console log

11.4 The "snap" command:

The "snap" command gathers system configuration information and compresses the information into a pax file.

The information gathered with the snap command may be required to identify and resolve system problems.

In principle, the snap file is supposed to be send to IBM, for troubleshooting purposes.

In normal conditions, the command "snap -gc" should be sufficient. The pax file will be stored in /tmp/ibmsupt

snap -gc

will create the following file:

/tmp/ibmsupt/snap.pax.Z

You can then handle this file, like sending to IBM.

The "/tmp/ibmsupt" directory will actually contain a few subdirs, with individual files, and the "snap -gc" command

will comfortably pack those files into one compressed (Z) archive.

The -g flag gathers general system information, including the following:

- Error report

- Copy of the customized Object Data Manager (ODM) database

- Trace file

- User environment

- Amount of physical memory and paging space

- Device and attribute information

- Security user information

The -c flag will create a compressed pax image (snap.pax.Z file).

Using the -d flag, you can select another directory instead of "/tmp/ibmsupt".

If you see what is collected using -g, all parts can be done manually by yourself, like using "errpt" etc..

Using the "-a" flag will collect all information.

11.5 The "diag" command:

The diag command is specifically for hardware problem determination

Hardware diagnostics can be run in three different ways:

- The first way is concurrent mode, where the system is up and running with users online, all processes running,

 and all volume groups being used.

- The second way is service mode. This is when you have the machine with AIX running in maintenance mode,

 thus with the minimum amount of processes started and only rootvg varied on.

- The third way is stand-alone diagnostics from booting from CD-ROM, or a NIM image.

 This diagnostic method uses an other version of AIX, so any diagnostics run

 are totally independent of the AIX setup on the machine being tested.

Without an argument, diag runs as a menu-driven program.

Move cursor to selection, then press Enter.

Diagnostic Routines

 This selection will test the machine hardware. Wrap plugs and

 other advanced functions will not be used.

Advanced Diagnostics Routines

 This selection will test the machine hardware. Wrap plugs and

 other advanced functions will be used.

Task Selection(Diagnostics, Advanced Diagnostics, Service Aids, etc.)

 This selection will list the tasks supported by these procedures.

 Once a task is selected, a resource menu may be presented showing

 all resources supported by the task.

Resource Selection

 This selection will list the resources in the system that are supported

 by these procedures. Once a resource is selected, a task menu will

 be presented showing all tasks that can be run on the resource(s).

F1=Help F10=Exit F3=Previous Menu

The first option, will perform a basic check, and will not ask you to unplug anything.

The second option goes deeper, and you can be asked to unplug cables.

The third option leads to submenu's for many service procedures

With the fourth option, you can select a class of resources.

When choosing one of the Diagnostics options, you may furher choose between "Problem Determination" mode,

or "System Verification" mode.

The first option will check the system, in conjuction with errorlog entries.

The second option is typically used when a hardware module has been replaced.

The diag command can also used with flags. The syntax is:

diag [-a] | [-s [-c]] [-E days] [-e] | [-d Device [-c] [-v] [-e] [-A]] | [-B [-c]] |

[-T taskname] | [-S testsuite] | [-c -d Device -L pending | complete]

-A Advanced mode. Default is non-Advanced mode.

-a Processes the changes in the hardware configuration. For example, missing and/or new resources.

-B Tests the base system devices, such as planar, memory, processor.

-c Indicates that the machine will not be attended. No questions will be asked. Results are written

 to standard output. Normally used by shell scripts.

-d Device Names the resource that should be tested. the Device parameter is a resource name

 displayed by the lscfg command.

-E Days Number of Days used to search the error log.

-e Causes the device's Diagnostic Application to be run in Error Log Analysis mode.

-L pending | complete Log Repair Action for a resource specified with the -d and -c flags.

 Use pending if the part has been replaced, but it is not yet known if this part will remain in the system.

 Use complete if the part has been replaced and it is known to remain in the system.

-S testsuite Tests the Test Suite Group:

 1.Base System

 2.I/O Devices

 3.Async Devices

 4.Graphics Devices

 5.SCSI Devices

 6.Storage Devices

 7.Commo Devices

 8.Multimedia Devices

-S Causes the system to be tested in system Checkout mode.

-T taskstring Specifies A particular Task to execute. the taskstring depends on the particular Task to be executed.

-v system Verification mode. Default is Problem Determination mode.

Examples:

diag -d hdisk2 -c

Starting diagnostics.

Ending diagnostics.

The absence of output means that no errors were found..

11.6 Viewing characteristics of processes, and resource usage:

If you want to "see" what a program is actually doing in terms of "syscalls" or "file opens" etc..,

we are more talking about "tracing" or "debugging" that program (or shell script).

That's not what we are talking about in this chapter. Here, we want to view "characteristics" of programs,

like how much memory it consumes, which libraries are in use, and that kind of stuff.

First of all, almost all AIX systems will have "topas" and "nmon" installed.

Both tools will show you (ascii) graphical information on cpu usage, disk usage, top consuming processes etc..

They are really great on viewing the status of your system in real time.

In AIX v. 5.3 or later, you might also use the "procmon" tool, which displays all processes with their

characteristics, and you can alter their state as well, like priority.

It's very easy to pinpoint the "top most" consuming processes (in terms of cpu, memory), using nmon, topas or procmon.

And you can view many other characteristics as well, using those utilities.

You know… this document is about "keypoints" only, so here are a few keypoints:

Quick view overall memory size / usage / memory related parameters:

bootinfo -r

lsattr -E -l mem0

lsattr -E -l sys0 -a realmem

lparstat -i

svmon -G

vmstat -v

vmo -L

prtconf

Quick view overall paging space usage:

lsps -a

lsps -s

pstat -s

Quick view processor attributes:

lparstat -i

mpstat

prtconf | grep proc

pmcycles -m
lsattr -El procx (x is 0,2, etc..)

lscfg | grep proc

pstat -S

Characteristics of a process with process id "pid":

proctree pid Dipslays the children of process pid.

procstack pid Displays information of the stack.

procmap pid Displays memory usage of a process.

procldd pid Diplays all libraries loaded by this process.

procflags pid Displays a process tracing flags, and the pending and holding signals

procsig pid Lists the signal actions for a process.

proccred pid Displays the credentials under which this process runs.

procfiles pid Shows the opened files of this process.

pfiles pid Show the open files that a process uses.

procwdx pid Shows the current working directory of this process.

ldd program_name Displays which libraries a program needs.

Resource usage of processes using the "ps" command:

Everybody knows the ps command, like using as "ps -ef" to retrieve a long listing of all processes

that are running on your system. The following commands might show some relevant resource usage:

ps aux | more Should show top consuming processes

Overall resource usage and Performance Tools:

curt:

The "CPU Utilization Reporting Tool" or "curt", needs a trace file as it's input. After analyzing this trace, it displays

summary and detailed information on CPU usage.

The general procedure is like this:

1. Start the trace, like:

trace <your_options> -o trace_file

2. Start the capture:

trcon

3. Stop the capture:

trcoff

4. Feed the trace to "curt"

curt -i trace_file -o outputfile

procmon:

still to do

sar:

still to do

svmon:

still to do

11.7 Booting problems and LED codes:

Bootsequence:

As a schematic overview on the bootprocess of the OS, the following can be used as a guideline:

BIST

POST

FIRMWARE ->

-- Locate a bootdevice from bootlist in NVRAM and start initial boot

- When a valid boot device is found, the first record or program sector number (PSN) is checked.

If it is a valid boot record, it is read into memory and is added to the IPL control block in memory.

Included in the key boot record data are the starting location of the boot image on the boot device,

the length of the boot image, and instructions on where to load the boot image in memory.

- The boot image is read sequentially from the boot device into memory starting at the location

specified in NVRAM. The disk boot image consists of the kernel, a RAM file system, and base customized

device information (customized reduced ODM).

- Control is passed to the kernel, which begins system initialization.

- The kernel runs init, which runs phase 1 of the "/sbin/rc.boot" script.

When the kernel initialization phase is completed, base device configuration begins.

-- Base Device Configuration Phase:

The init process starts the rc.boot script. Phase 1 of the rc.boot script performs the base device configuration,

and it includes the following steps:

. The boot script calls the restbase program to build the customized Object Data Manager (ODM) database

 in the RAM file system from the compressed customized data.

. The boot script starts the configuration manager, which accesses phase 1 ODM configuration rules to configure

 the base devices.

. The configuration manager starts the sys, bus, disk, SCSI, and the Logical Volume Manager (LVM) and

 rootvg volume group configuration methods.

. The configuration methods load the device drivers, create special files, and update the customized data

 in the ODM database.

-- System Boot Phase:

The System Boot Phase involved the following steps:

The init process starts phase 2 running of the rc.boot script. Phase 2 of rc.boot includes the following steps:

.Call the ipl_varyon program to vary on the rootvg volume group.

.Mount the hard disk file systems onto their normal mount points.

.Run the swapon program to start paging.

.Copy the customized data from the ODM database in the RAM file system to the ODM database in the hard disk file system.

.Exit the rc.boot script.

- After phase 2 of rc.boot, the boot process switches from the RAM file system to the hard disk root file system.

- Then the init process runs the processes defined by records in the /etc/inittab file.

One of the instructions in the /etc/inittab file runs phase 3 of the rc.boot script,

 cat /etc/inittab | grep rc.boot

 brc::sysinit:/sbin/rc.boot 3 >/dev/console 2>&1 # Phase 3 of system boot

which includes the following steps:

.Mount the /tmp hard disk file system.

.Start the configuration manager phase 2 to configure all remaining devices.

.Use the savebase command to save the customized data to the boot logical volume

.Exit the rc.boot script.

At the end of this process, the system is up and ready for use.

If the "/etc/inittab" has a record referring to "rc.local", that script is executed.

Most important LED codes in the bootprocess:

For convenient reference, here are the Standard rootvg LV's / Filesystems:

LV name mountpoint

hd4 /

hd5 BLV boot logical volume

hd6 paging

hd2 /usr

hd3 /tmp

hd1 /home

hd9var /var

hd10opt /opt

hd8 jsflog

hd11admin /admin contains /admin/tmp on AIX 6.1

During the various fases at boottime, as described above, in case of an error, a LED code may be important:

Damaged boot image BLV LED 201

Invalid bootlist LED 223-229

reduced ODM from BLV copied into RAMFS: LED 548

bootinfo -b is called to determine the last bootdevice LED 511

ipl_varyon of rootvg LED 551,552,554,556

mount /dev/hd4 on temporary mountpoint /mnt LED 555,557

mount /usr, /var LED 518

syncvg rootvg, or inittab problem LED 553

tcp/ip is being configured, and there is some problem LED 581

Corrupted filesystem, corrupted JFS log LED 551 555 557

Superblock corrupted, corrupted customized ODM database LED 552,554,556

Last phases in the boot is where cfgcon is called, to configure the console.

cfgcon LED codes include:

C31: Console not yet configured.

C32: Console is an LFT terminal

C33: Console is a TTY

C34: Console is a file on disk

C99: Could not detect a console device

If at boot:

- kernel initializes and takes control: OK=299

- the restbase command is called to copy a partial image of ODM

 from the BLV into the RAMFS. If this operation is successful,

 the LED display shows 510; otherwise, LED code 548 is shown. OK=510, ERROR=548

- bootinfo -b is called to determine the last bootdevice OK=511

- The rootvg volume group is varied on with the special version of the varyonvg

 command named the ipl_varyon command. If this command is successful,

 the system displays 517; otherwise, one of the following LED codes will

 appear: 552, 554, or 556, and the boot process is halted. OK=517, ERROR=551,552,554,556

- Root file system hd4 is checked using the fsck -f command. This will verify

 whether the file system was unmounted cleanly before the last shutdown. If

 this command fails, the system will display code 555. ERROR=555

- The root file system (/dev/hd4) is mounted on a temporary mount point (/mnt)

 in RAMFS. If this fails, 557 will appear in the LED display. ERROR=557

- The /usr file system is verified using the fsck -f command and then

 mounted. If this operation fails, the LED 518 appears. ERROR=518

- The /var file system is verified using the fsck -f command and then

 mounted. The copycore command checks if a dump occurred. If it did, it is

 copied from default dump devices, /dev/hd6, to the default copy directory,

 /var/adm/ras. Afterwards, /var is unmounted.

- The primary paging space from rootvg, /dev/hd6, will be activated.

- The mergedev process is called and all /dev files from the RAM file system

 are copied onto disk.

- All customized ODM files from the RAM file system are copied to disk. Both

 ODM versions from hd4 and hd5 are now synchronized.

- Finally, the root file system from rootvg (disk) is mounted over the root file

 system from the RAMFS. The mount points for the rootvg file systems

 become available. Now, the /var and /usr file systems from the rootvg are

 mounted again on their ordinary mount points.

There is no console available at all these stages, so all boot messages will be copied to

alog. The alog command maintains and manages logs.

Chapter 12. User environment and security.

12.1 AIX v5/v6 Security and user environment related files:

For specific AIX v6 files and commands, see later sections.

/etc/security/environ Contains the environment attributes for users.

/etc/security/lastlog Contains the last login attributes for users.

/etc/security/limits Contains process resource limits for users.

/etc/security/user Contains extended attributes for users.

/usr/lib/security/mkuser.default Contains the default attributes for new users.

/etc/passwd Contains the basic attributes of users.

/etc/security/passwd Contains password information.

/etc/security/login.cfg Contains configuration information for login and user authentication.

/etc/utmp Contains the record of users logged into the system.

/var/adm/wtmp Contains connect time accounting records.

/etc/security/failedlogin Records all failed login attempts.

/etc/motd Contains the message to be displayed every time a user logs in to the system.

/etc/environment Specifies the basic environment for all processes.

/etc/group Contains the basic attributes of groups.

/etc/security/group Contains the extended attributes of groups.

/etc/profile Contains environment settings for all users

$HOME/.profile Contains environment settings for a specific user.

"/etc/security/limits" and ulimit command:

The /etc/security/limits file is an ASCII file that contains stanzas that specify the

process resource limits for each user. These limits are set by individual attributes

within a stanza.

ulimit Command:

Purpose

Sets or reports user resource limits.

Syntax

ulimit [-H] [-S] [-a] [-c] [-d] [-f] [-m] [-n] [-r] [-s] [-t] [-u][Limit]

Description

The ulimit command sets or reports user process resource limits,

as defined in the /etc/security/limits file. This file contains these default limits:

default:

 fsize = 2097151

 core = 2097151

 cpu = -1

 data = 262144

 rss = 65536

 stack = 65536

 nofiles = 2000

 threads = -1

 nproc = -1

john:

 fsize = 2097151

 core = 2097151

etc..

These values are used as default settings when a new user is added to the system.

The values are set with the mkuser command when the user is added to the system, or changed with the chuser command.

Note for troubleshooting purposes: if somehow, a process or user, cannot create a larger file, it is worth checking

the "ulimit" for that account. For example, if a file should be created of 3GB size, but the process "mysteriously"

stops at say 1.5 GB, it could be due to a ulimit restriction.

Check the ulimit restrictions with "ulimit -a", or use smitty.

"/etc/security/lastlog":

The /etc/security/lastlog file is an ASCII file that contains stanzas with the last

login attributes for users. Each stanza is identified by a user name and contains

attributes in the Attribute=Value form. Each attribute is ended by a new-line

character, and each stanza is ended by an additional new-line character.

So, it contains attributes like tty, hostname, datetime etc.. Of the lastlogin

of each user.

/etc/utmp, /var/adm/wtmp, /etc/security/failedlogin, and the last command:

The last command displays, in reverse chronological order, all previous logins and logoffs

still recorded in the /var/adm/wtmp file. The /var/adm/wtmp file collects login and logout records

as these events occur and holds them until the records are processed by the

acctcon1 and acctcon2 commands as part of the daily reporting procedures.

The utmp file, the wtmp file, and the failedlogin file contain records with user and

accounting information. When a user successfully logs in, the login program

writes entries in two files.

- The /etc/utmp file, which contains a record of users logged into the system.

 The command who -a processes the /etc/utmp file.

- The /var/adm/wtmp file (if it exists), which contains connect-time accounting records.

- On an invalid login attempt, due to an incorrect login name or password, the login

 program makes an entry in the /etc/security/failedlogin file, which contains a

 record of unsuccessful login attempts.

Use the who command to read the contents of the /etc/security/failedlogin file:

who /etc/security/failedlogin

who /etc/security/failedlogin > /tmp/failed_login.txt

To clear the file use:

cp /dev/null /etc/security/failedlogin

"/usr/lib/security/mkuser.default" and "/etc/security/user":

The /usr/lib/security/mkuser.default file contains the default attributes for new

users. This file is an ASCII file that contains user stanzas. These stanzas have

attribute default values for users created by the mkuser command. Each attribute

has the Attribute=Value form.

pg /usr/lib/security/mkuser.default

user:

pgrp = staff

groups = staff

shell = /usr/bin/ksh

home = /home/$USER

admin:

pgrp = system

groups = system

shell = /usr/bin/ksh

home = /home/$USER

The /etc/security/user file contains extended user attributes. This is an ASCII file

that contains attribute stanzas for users. The mkuser command creates a stanza

in this file for each new user and initializes its attributes with the default attributes

defined in the /usr/lib/security/mkuser.default file.

Each stanza in the /etc/security/user file is identified by a user name, followed by

a colon (:), and contains comma-separated attributes in the Attribute=Value form.

If an attribute is not defined for a user, either the default stanza or the default

value for the attribute is used. You can have multiple default stanzas in the

/etc/security/user file. A default stanza applies to all of the stanzas that follow, but

does not apply to the stanzas preceding it.

The mkuser command creates an entry for each new user in the /etc/security/user

file and initializes its attributes with the attributes defined in the

/usr/lib/security/mkuser.default file. To change attribute values, use the chuser

command. To display the attributes and their values, use the lsuser command.

To remove a user, use the rmuser command.

"/etc/security/environ" and "/etc/environment"

In "/etc/environment" you specify settings (environment variables) for all processes.

The /etc/security/environ file is an ASCII file that contains stanzas with the

environment attributes for users. Each stanza is identified by a user name and contains

attributes in the Attribute=Value form, with a comma separating the attributes.

Each attribute is ended by a new-line character, and each stanza is ended by an additional new-line character.

"/etc/profile" and "$HOME/.profile"

The /etc/profile file contains further environment variables, as well as any

commands to run, that apply to all users. Use the /etc/profile file to control

variables such as:

 Export variables

 File creation mask (umask)

 Terminal types

 Mail messages to indicate when new mail has arrived

Commands to be included in /etc/profile should be appropriate for all users of the

system. An example of a command that you may want all users to run when they

log in is the news command.

The $HOME/.profile file enables you to customize your individual working

environment. The .profile file also overrides commands and variables set in the

/etc/profile file. Use the .profile file to control personal settings such as:

 the prompt

 personalized umask etc..

12.2 mkuser and usrck:

Add a local user in AIX:

Ofcourse, smitty can be used to add a local user to the system, or use the "mkuser" command.

Syntax mkuser:

mkuser [-R load_module] [-a username] [Attribute=Value ...] Name

As we have seen in section 12.1, a number of files contains stanza's for new users, so actually

the mkuser command is often quite "short". Unless you want to override a particular stanza attribute,

by using "Attribute=Value".

As an example that most is already in the stanza, for example, you do not need to specify a home dir for the new user,

because that is already in the file "/usr/lib/security/mkuser.default".

If the authentication actually occurs through an external entity, you must specify the "load_module" using -R.

The mkuser command does not create password information for a user. It initializes the password field

with an * (asterisk). Later, this field is set with the passwd or pwdadm command.

New accounts are disabled until the passwd or pwdadm commands are used to add authentication

information to the /etc/security/passwd file.

The /usr/lib/security/mkuser.default file contains the default attributes for new users.

This file is an ASCII file that contains user stanzas. These stanzas have attribute default values

for users created by the mkuser command. Each attribute has the Attribute=Value form. If an attribute

has a value of $USER, the mkuser command substitutes the name of the user. The end of each attribute pair

and stanza is marked by a new-line character.

There are two stanzas, user and admin, that can contain all defined attributes except the id and admin attributes.

The mkuser command generates a unique id attribute. The admin attribute depends on whether the -a flag is used with

the mkuser command.

A typical user stanza looks like the following:

user:

 pgroup = staff

 groups = staff

 shell = /usr/bin/ksh

 home = /home/$USER

 auth1 = SYSTEM

To create the john user account with the default values in the /usr/lib/security/mkuser.default file, type:

mkuser john

To create the john account as an administrator, type:

mkuser -a john

To create the john user account and set the su attribute to a value of false, type:

mkuser su=false john

To create the john account that is identified and authenticated through the LDAP load module, type:

mkuser -R LDAP john

The usrck command:

With this command you can verify the correctness of useraccounts.

Syntax:

usrck { -l [-b] | -n | -p | -t | -y } { ALL | User ... }

The usrck command verifies the correctness of the user definitions in the user database files,

by checking the definitions for ALL the users, or for the users specified by the User parameter.

With the "-y" flag, you can fix errors.

The command first checks the entries in the /etc/passwd file. If you indicate that the system should fix errors,

duplicate user names are reported and disabled. Duplicate IDs are reported only, because there is no system fix.

The usrck command then verifies that each user name listed in the /etc/passwd file has a stanza in the /etc/security/user,

/etc/security/limits and /etc/security/passwd files. The usrck command also verifies that each group name

listed in the /etc/group file has a stanza in the /etc/security/group file. The usrck command using the -y flag creates

stanzas in the security files for the missing user and group names.

To verify that all the users exist in the user database, and have any errors reported (but not fixed), enter:

usrck -n ALL

To delete from the user definitions those users who are not in the user database files, and have any errors reported, enter:

usrck -y ALL

12.3 The AIX v 5.3 and AIX 6.1 "aixpert" command:

WARNING: Always test on a representative test LPAR, because the impact could be substantial.

This command is a security hardening tool, which incorporates many functions into one system.

It was available since v5.3 TL05, but many enhancements were made in v6, like LDAP integration, undo functionality etc..

The command uses XML files with security settings. The home of aixpert is "/etc/security/aixpert",

where in subdirectories those files are stored.

A very imporatnt file is "aixpertall.xml", stored in "/etc/security/aixpert/core/".

It contains the XML listings of all possible system settings.

To quickly illustrate the command: suppose you have the file "/etc/security/aixpert/core/mysec.xml",

containing security settings, then you can apply those settings with:

aixpert -f /etc/security/aixpert/core/mysec.xml

But you can also apply a pre-defined model by using the "-l" flag and choosing for "high", or "medium" etc..

The syntax of the command is:

aixpert -l h|high | m|medium | l|low | d|default | s|sox-cobit [-n -o filename] [-a -o filename] [-p]

aixpert -c [-p]

aixpert -u [-p]

aixpert -d

aixpert [-f filename] [-a -o filename] [-p]

What's in the XML files?

The XML files contain settings or rules. For example, the rule about constraints on passwords (minimum length etc..),

along with any prerequiste filesets that are needed for implementing the rule:

<AIXPertEntry name=”minagehls”>

<AIXPertRuleType> 1 </<AIXPertRuleType>

<AIXPertRuleState>Desired</AIXPertRuleState>

<AIXPertDescription> Specifies the minimum number of weeks to 1 week,

before a password can be changed </AIXPertDescription>

<AIXPertPrereqList> bos.rte.date, bos.rte.com

etc..

Main Usage:

-l flag:

If you use aixpert -l high|medium|low|default|sox-cobit, then the config settings to that particular

security model (like "high" etc..) are applied to the system.

In combination with "-o" and "-n", you can write the records belonging to that specified security level, to an output file.

-f flag:

With this flag, you can specify a file with certain security settings, which are then applied to the system.

-o flag:

With this flag, you can specify a file to which you can export the security settings.

-u flag:

Undoes the security settings that have been applied.

Other interfaces to aixpert:

Instead of the command line, you can use smitty as well, using a guided menu system.

smitty aixpert

 AIX Security Expert

Move cursor to desired item and press Enter.

 High Level Security

 Medium Level Security

 Low Level Security

 Default Security

 SOX-COBIT Best Practices Security

 SOX-COBIT Best Practices Security Audit

 Undo Security

 Check Security

And you can also use the graphical environments of WebSM or IBM Systems Director Console.

Optionally LDAP integration:

An AIX Security Expert policy file can be created and saved in a central location

on an LDAP server. The LDAP server stores the policy file containing the XML

rules that is read by AIX Security Expert to determine security settings. Then as

other systems in the network need to be hardened, the policy file is fetched from

the LDAP server and a consistent policy is distributed and maintained throughout

the network.

Examples:

Apply the settings from the file "mysec" to the system:

aixpert -f /etc/security/aixpert/core/mysec.xml

Write the high security entries of your system to the file "MyPreferredSettings.xml".

aixpert -l high -n -o /etc/security/aixpert/plugin/myPreferredSettings.xml

12.4 The regular Filemodes (file and directory permissions):

If, in some directory, you retrieve a filelisting using "ls -al", you see the familiar filemodes (or permissions)

that are in effect on the files. Here I mean the "rwxrwxrwx" stuff

In short:

r = read = 4

w = write = 2

x = execute = 1

- = lack of that permission

A the mode of a file always "starts" with "-".

A the mode of a directory always starts with "d".

rwx rwx rwx

user group others (world)

So, for edxample, if you see files with these mode:

-rwx------- only the owner (user) can read, write, and execute the file (execute if applicable)

-rw-rw-rw- the owner, group, and others can read an write the file.

-r--r----- the owner, and the group, can only read the file

-rw-r----- the owner can read and write, the group can only read

This type of access control is called "Discretionary Access Control" (DAC).

It can be further enhanced using "Access Control Lists" (ACL).

You can change the filemode (or permissions) using the chmod command. This one is really simple to use:

You just state what is added or subtracted to/from the user (owner) "u", the group "g", and others "o"

So, suppose "readme" has as filemode "-rw-------", and you want that other groupmembers may read that file as well, do:

chmod g+r readme

And if the groupmembers may read and write that file, do"

chmod g+rw readme

And if you want the groupmembers, and others, may read and write that file, do:

chmod og+rw readme

And suppose that "myscript.ksh" presently has the permissions set as "-r-x------" (so only the owner may read and execute),

and you

allow the group to have read and execute as well, do:

chmod g+rx myscript.ksh

So, in general the chmod command can be used as "chmod [u][g][o] + or - [r][w][x]"

+: adds a permission

-: revokes a permission

Since r=4, w=2, x=1, you can use the nummeric assignment as well. For example:

chmod 644 myfile.txt

means that the permissions are set to "-rw-r--r--" because rw=4+2, r=4, r=4

Or what do you think of this:

chmod 550 myscript.ksh

It will set the permission to "-r-xr-x---" because rx=4+1, rx=4+1, 0=nothing

Observe that in "nummeric" form, you use 3 digits. Now, actually, there is a "fourth" digit as well.

For this fourth digit, which determines the setuid or setgid modes, see the next section.

12.5 The setuid and setgid mode (or bits):

When setuid (set-user identification) permission is set on an executable file, a process that runs this file

is granted access based on the owner of the file, rather than the user who created the process.

This permission enables a user to access files and directories that are normally available only to the owner.

Note: on some unixes, the setuid bit feature is disabled per default.

The setuid permission is shown as an "s" instead of the "x" in the file permissions.

Example:

ls -al

-r-sr-xr-x 1 johnny accounting 12796 Jul 15 21:23 myprog

The setgid permission is similar to the setuid permission. The process's effective group ID (GID)

is changed to the group that owns the file, and a user is granted access based on the perms that are granted to that group.

Example:

ls -al

-r-xr-sr-x 1 johnny accounting 12796 Jul 15 21:23 myprog

You can use the chmod command again, to set the setuid or setgid bits.
Instead of a 3 digit mode, now use a 4 digit mode. Use "4" for setuid, and "2" to set setgid.

Example:

If I do this:

chmod 555 myprog

ls -al

-r-xr-xr-x 1 johnny accounting 12796 Jul 15 21:23 myprog

So, this is the "normal" situation. But if I do this:

chmod 4555 myprog

ls -al

-r-sr-xr-x 1 johnny accounting 12796 Jul 15 21:23 myprog

This time, the setuid is set, and the program will run under the "johnny" account at all times.

Note:

The following fameous example will explain it all. The "password" program has the setuid on.

The password program can indeed adjust the "/etc/security/password" file, which a ordinary

user is ofcourse not allowed to do. But if a user calls the password program, he/she can alter the password file.

cd /usr/bin

ls -al password

-r-sr-xr-x 1 root security 40014 Apr 05 2009 /usr/bin/passwd

cd /etc/security

ls -al passwd

-rw------- 1 root security 1293 Apr 11 11:22 /etc/security/passwd

You see? An ordinary user using passwd can change the passwd file even that it's only rw for root.

Is there something wrong with setuid? Most often, it's regarded as a security risk, because someone

can run a program with the credentials of the owner of the file.

Making shell scipts having setuid is often viewed as "very bad indeed".

The "fpm" program that is discussed in the next section, can be of help in hardening the system.

It will check the executables and daemons on the setuid and setgid bits, and change them according to the choosen policy.

12.6 The "fpm" program:

Essentially, the fpm, or "file permission manager" utility, can remove the setuid en setgid modes from programs and daemons.

Generally, this is described as "hardening" the system.

But beware that some programs do need the setuid, or depend on running commands which have the setuid bit in place.

Always test it on a representative test LPAR.

Fpm will check the executables and daemons on the setuid and setgid bits, and change them according to the choosen policy.

Syntax:

fpm [-l high | medium | low | default [-f file] [[-c] [-p]] [-v]] | [-s] | [-q] | [-?]

- Most stringent: -l high

This flag uses the list of files in the "/usr/lib/security/fpm/data/high_fpm_list" file

as input by default, but an alternate input file can be selected with the -f flag.

- Medium level: -l medium

This flag uses the list of files in the "/usr/lib/security/fpm/data/med_fpm_list" file

as input by default. An alternate input file can be selected with the -f flag.

- low level: -l low

This flag uses the list of files in the "/usr/lib/security/fpm/data/med_fpm_list" file

as input by default. An alternate input file can be selected with the -f flag.

- default: -l default

Returns the system commands previously modified by the fpm command to their default permissions,

if the commands were previously altered using the level of high, medium or low. This option reads the

/usr/lib/security/fpm/custom/default/*.* file and sets the permissions defined in the file.

-c flag: Checks the current situation against a certain specified level as "high", "medium" etc..

Examples:

fpm -c -l low # Checks the system against the low level specs, but makes no changes.

fpm -l high # Applies the high level security settings on the system.

12.7 Extensions on DAC:

The filemode (-rwxrwxrwx stuff) determines whether the owner and/or group and/or others, may

read, write, or execute the file.

This falls in the realm of "Discretionary Access Control".

There are a few "enhancements" though:

1. Internal uid / gid checking:

There are a few special executables in AIX, that will not behave in the normal way of setting permissions.

What I mean is this.

If you look at a normal executable, and you change the permissions to 555 (or higher), then anyone

might execute that program.

For example, if I do this:

chmod 555 myprog

Then the filemode is "-r-xr-xr-x" meaning that anyone can start myprog.

But there are a few exceptions, namely those programs that have uid / gid checking enabled, which

will make sure that ONLY a specific uid or gid, may execute the program.
For example, suppose a program will only execute if the uid=0, independent of how you have used the chmod command.

So, suppose "specialexec" is such an uid "aware" executable, and suppose it only "reacts" on a uid=0 that can activate it,

and we do this:

chmod 555 specialexec

or we do this:

chmod 777 specialexec

Then it won't work because 'specialexec" will check if you are uid (user id) 0. If not, it will not start.

The same "trick" may have been implemented using the group id (gid). When AIX is installed, a number of standard groups

are present. In the same way, a program may check if the caller is member of a certain group.

If the caller is, then the program activates. If not, the program does not start, independent of the rwxrwxrwx permissions.

2. Access Control Lists (ACL):

The settings of regular filemode (-rwxrwxrwx), is not finegrained enough in certain situations.

Suppose the file "salaries.txt" is owned by john, who is member of the group accounting.

Suppose Ted is member of the group accounting.

Now, you want only Ted to have rw access to salaries.txt, but that access should not apply

to the whole group accounting, and certainly not to all others.

How are you going to do that with the chmod command?

That's why ACL's are implemented in most unix versions. (Although in many cases, it's not even used)

With an ACL, you could create an "access list" for an object (like a file or directory) that looks like this:

base permissions:

 owner john: rwx

 group accounting: r--

 others: ---

extended permissions:

 ted: rw

So, you can view ACL's as an enhancement to regular filemodes (permissions).

You just use your EDITOR (like vi) to "edit" an acl. Actually, you need the EDITOR environment variable set.

Some important commands used to view, edit, or transfer acl's:

acledit Modify the acl for an object

aclget View the acl

aclput Apply the existing acl of an object, to another object

Examples:

To list the ACL´s of the directory (filesystem) "/data/taxes":

aclget /data/taxes

To modify an acl on an object, use a command similar to:

acledit /data/taxes

To apply the same acl's of "/data1" to "/data2", use:

aclget /data1 | aclput /data2".

Chapter 13. Some keypoints on printing.

In the AIX printing environment, files to be printed are sent to the AIX print

spooler daemon (qdaemon) using any of the AIX print commands (like enq, qprt, lp,

or lpr). The spooler daemon serializes the jobs. The spooler sends jobs, one at

a time, to back-end programs that may filter the data before sending it to the local

printer driver or network printing application.

You can check if the print spooler daemon is running with:

ps -ef | grep qdaemon

..

 root 46980 43364 0 Oct 17 - 0:00 /usr/sbin/qdaemon

The daemon is started from /etc/inittab:

qdaemon:23456789:wait:/usr/bin/startsrc -sqdaemon

If you need to start the qdaemon, use the following command:

startsrc -s qdaemon

Here are some important descriptions:

- print job:

A print job is a unit of work to be run on a printer.

The system assigns a unique job number to each job it runs.

- queue:

The queue is where you direct a print job. It is a stanza in the /etc/qconfig

file whose name is the name of the queue and points to the associated

queue device.

- queue Device

The queue device is the stanza in the /etc/qconfig file that normally follows

the local queue stanza. It specifies the /dev file (printer device) like "/dev/lp0" that should

be used.

- qdaemon

The qdaemon is a process that runs in the background and controls the

queues. It is generally started during IPL.

The main spooler command is the enq command. Although you can invoke

this command directly to queue a print job, three front-end commands are

defined for submitting a print job: The lp, lpr, and qprt commands. A print

request issued by one of these commands is first passed to the enq

command, which then places the information about the file in the queue for

the qdaemon to process.

The qdaemon uses backend processes (like "piobe") for internal handling of printing objects and printjobs.

- devices

In order to show the present devices, use the lsdev command:

lsdev -Cc printer

lp0 Available 00-00-0P-00 Lexmark...

lp1 Available 00-00-S2-00 IBM...

lp2 Available 00-00-S1-00 Hewlett-Packard...

Individual device files can be listed with the ls command, for example

ls -al /dev/lp0

crw-rw-rw- 1 root system 25,0 Oct 19 13:62 /dev/lp0

- The Print Configuration File

The file that holds the configuration for the printers that exist on the system is

the /etc/qconfig file. It is the most important file in the spooler domain for

these reasons:

- It contains the definition of every queue known to the spooler.

- A system administrator can read this file and discern the function of each queue.

- Although It is not recommended, this file can be edited to modify spooler queues without halting the spooler.

The /etc/qconfig file describes all of the queues defined in the AIX operating

system. A queue is a named, ordered list of requests for a specific device. A

device is something (either hardware or software) than can handle those

requests one at a time. The queue provides serial access to the device.

The following is an example of the partial contents of the /etc/qconfig file.

..

..

lpforu:

device = lp0

lp0:

file = /dev/lp0

header = never

trailer = never

access = both

backend = /usr/lib/lpd/piobe

- Quick list of commands:

The following commands are usefull controlling printjobs and queue's:

Submit print jobs Status print jobs Cancel print jobs Control printsubsystem

enq enq -A enq -x qadm

qprt qchk qcan stopsrc -s qdaemon

lp lpstat lprm startsrc -s qdaemon

lpr lpq cancel

- Creating a print queue:

Using smitty:

smitty mkque

smitty mkpq

Or using the commandline:

1. Add a queue using the mkque command. For example, the following command

will configure a remote queue. It configures just the queue and not the queue device:

mkque -qlp -a 'host=starboss' -a 'rq=solar'

The -q flag specifies the name of the queue to be added (lp).

The -a flag specifies a line to be added to the queue stanza in the qconfig

file (host=starboss and rq=solar). These flags must be entered last when

entering the mkque command on the command line.

2. Add a queue device associated with the queue you have added, using the

mkquedev command. For the queue we added in the previous example, the

following command will add a device named lpdev that has /usr/lib/lpd/piobe

as its backend:

mkquedev -qlp -dlpdev -a 'backend=usr/lib/lpd/piobe'

The -q flag specifies the name of the queue (this name must already exist)

to which the queue device is added. The mkquedev command automatically

adds the device=attribute to the specified queue stanza.

Examples of Commands:

lpstat:

System5: lpstat

BSD : lpq

AIX : qchk

But lpstat is also most often used in AIX.

The lpstat command displays information about the current status of the queue's and printers.

The lpstat command syntax is as follows:

lpstat [-aList] [-cList] [-d] [-oList] [-pList] [-r] [-s]

[-t] [-uList] [-vList] [-W]

An example of the lpstat command without any flags is as follows:

lpstat

Queue Dev Status Job Files User PP% Blks Cp Rnk

------ ---- ------- --- ---------------- ------------ --- ---- -- ---

lpforu lp0 READY

qchk:

The qchk command displays the current status information regarding

specified print jobs, print queues, or users.

The qchk command syntax is as follows:

qchk [-A] [-L | -W] [-P Printer] [-# JobNumber] [-q] [-u

UserName] [-w Delay]

An example of the qchk command to view the status of job # 442:

qchk -#422

Queue Dev Status Job Files User PP % Blks Cp Rnk

------- ----- --------- --- ------------------ ---------- ---- -- ----- --- ---

prtdumm null READY

qstatus: (WARNING): 0781-350 Job 442 not found -- perhaps it's done?

lpq:

The lpq command reports the status of the specified job or all jobs

associated with the specified UserName and JobNumber variables.

The lpq command syntax is as follows:

lpq [+ [Number]] [-l | -W] [-P Printer] [JobNumber] [UserName]

The following is an example of the lpq command without any flags.

lpq

Queue Dev Status Job Files User PP% Blks Cp Rnk

------ ---- ------- --- ---------------- ------------ --- ---- -- ---

lpforu lp0 READY

To display a job number in the print queue lp0, enter:

lpq -P lp0

Queue Dev Status Job Files User PP % Blks CP Rnk

lp0 dlp0 running 39 motd guest 10 83 12

Printing commands:

lp, lpr, qprt, enq

System5: lp

BSD : lpr

AIX : qprt

1. To submit a printjob, use either lp. lpr, or qprt. All jobs will go to the system default queue

unless the PRINTER or LPDEST variables are set. You can also specify on the command line which

queue ti ose.

Use -d with lp or use -P with qprt and lpr.

All the printcommands lp, lpr, and qprt, actually call the "enq" command, which places

the print request in a queue.

To print multiple copies, use the "qprt -N #" or "lp -n #" command.

For lpr use just a dash followed by the number of copies, like "lpr - #".

Examples:

qprt -P funjet /tmp/testfile

lpr -P funjet /tmp/testfile

lp -d funjet /tmp/testfile

enq:

This command has a very extended syntax. It is used in multiple ways, like controlling printing objects,

and managing printjobs. You can also use it to move printjobs from one queue to another queue.

enq -q -PHPQUE1

Queue Dev Status Job Files User PP % Blks Cp Rnk

------- ----- --------- --- ------------------ ---------- ---- -- ----- --- ---

HPQUE1 hp@UT READY

Stopping and starting a printqueue using the "enq" command:

>>>> Stopping the Print Queue

In the following scenario, you have a job printing on a print queue, but you

need to stop the queue so that you can put more paper in the printer.

lpstat -vlpforu

Queue Dev Status Job Files User PP % Blks Cp Rnk

------ ---- -------- --- ---------------- -------- ---- -- ---- -- ---

lpforu lp0 RUNNING 3 /etc/passwd root 1 100 1 1 1

Disable the print queue using the enq command as shown in the following

example.

enq -D -P 'lpforu:lp0'

Checking the printer queue using the qchk command as shown in the

following example.

qchk -Plpforu

Queue Dev Status Job Files User PP % Blks Cp Rnk

------ ---- -------- --- ---------------- -------- ---- -- ---- -- ---

lpforu lp0 DOWN 3 /etc/passwd root 1 100 1 1 1

>>>> Starting the Print Queue

You have replaced the paper, and you now want to restart the print queue so

that it will finish your print job. Here is how you would do this.

lpstat -vlpforu

Queue Dev Status Job Files User PP % Blks Cp Rnk

------ ---- -------- --- ---------------- -------- ---- -- ---- -- ---

lpforu lp0 DOWN 3 /etc/passwd root 1 100 1 1 1

enq -U -P 'lpforu:lp0'

qchk -P lpforu

Queue Dev Status Job Files User PP % Blks Cp Rnk

------ ---- -------- --- ---------------- -------- ---- -- ---- -- ---

lpforu lp0 RUNNING 3 /etc/passwd root 1 100 1 1

Other commands that can be used to stop and start a queue:

smitty qstop

smitty qstart

To stop a queue, you can use the qadm and disable commands as well. For example, to stop the queue PCL-mv200:

qadm -D PCL-mv200

disable PCL-mv200

qadm:

The qadm command is a front-end command to the enq command. This command brings printers,

queues, and the spooling system up or down and also cancels jobs. The qadm command

translates the requested flags into a format that can be run by the enq command.

So, again the "enq" command forms the basis.

qadm { -G } | { [-D Printer] [-K Printer] [-U Printer] [-X Printer] }

-D: brings down the printer or queue

-U: brings up the printer or queue

-G: brings down the printing subsystem, when all current jobs are ready

To bring down the complete queueing system, use:

qadm -G

To stop a particular queue:

qadm -D PCL-mv200

Cancel jobs:

System5: cancel

BSD : lprm

AIX : qcan

For example to cancel Job Number 127 on whatever queue the job is on, run

qcan -x 127

cancel 127

To cancel all jobs queued on printer lp0, enter

qcan -X -Plp0

cancel lp0

Moving a printjob from one queue to another queue:

You can use wsm, smitty, or the command line.

Using smitty:

smitty qmov

Using the commandline:

qmov -m DestinationQueue -# JobNumber

qmov -m DestinationQueue -P Queue

qmov -m DestinationQueue -u User

For example:

To move job number 280 to print queue hp2, type:

qmov -mhp2 -#280

To move all print jobs on print queue hpq1 to print queue hp22, type:

qmov -mhpq2 -Phpq1

Chapter 14. Some keypoints on networking.

Adapters and interfaces:

When an adapter is added to the system, a logical device is created in the ODM, for example

Ethernet adapters will show as follows:

lsdev -Cc adapter | grep ent

ent0 Available 10-80 IBM PCI Ethernet Adapter (22100020)

ent1 Available 20-60 Gigabit Ethernet-SX PCI Adapter (14100401)

So you will have an adapter, and a corresponding interface, like for example

The Adapter is : ent0

Then the interface is: en0

To list all interfaces on the system, use:

lsdev -Cc if

en0 Defined 10-80 Standard Ethernet Network Interface

en1 Defined 20-60 Standard Ethernet Network Interface

et0 Defined 10-80 IEEE 802.3 Ethernet Network INterface

et1 Defined 20-60 IEEE 802.3 Ethernet Network INterface

lo0 Available Loopback Network INterface

A corresponding network interface will allow tcpip to use the adapter.

Most of the time, we will deal with auto-detectable adapters, but in some cases an interface might

need to be created manually with

smitty inet

smitty mkinet

To change or view attributes like duplex settings, use

smitty chgenet

 Change / Show Characteristics of an Ethernet Adapter

Type or select values in entry fields

Press Enter AFTER making all desired changes.

 Ethernet Adapter ent0

 Description IBM PCI Ethernet Adapt

 Status Available

 Location 10-80

 Hardware Transmit queue size [64]

 Hardware Receive queue size [32]

 Full duplex no

 Enable Alternate Ethernet address no

 Alternate Ethernet address [0x0000000000]

 Apply change to DATABASE only no

To show IP parameters of an interface, use:

ifconfig -a # shows all

ifconfig en0 # shows specific interface

en0:

flags=e080863<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT>

inet 195.116.119.2 netmask 0xffffff00 broadcast 195.116.119.255

If you want to view statistics and media attributes of an interface, you can use the "entstat" command, like:

entstat -d en0

Resolving hostnames:

>> the "/etc/netsvc.conf" file and the NSORDER variable:

The default order in resolving host names is:

- BIND/DNS (named)

- Network Information Service (NIS)

- Local /etc/hosts file

The default order can be overwritten by creating the configuration file, /etc/netsvc.conf and specifying

the desired order. Both the default and /etc/netsvc.conf can be overwritten with the environment variable NSORDER.

You can override the order by creating the /etc/netsvc.conf file with an entry.

If /etc/netsvc.conf does not exist, it will be just like you have the following entry:

hosts = bind,nis,local

You can override the order by changing the NSORDER environment variable. If it is not set,

it will be just like you have issued the command:

export NSORDER=bind,nis,local

>> the /etc/resolv.conf file:

If you use name services, you can provide the minimal information needed through the mktcpip command.

Typically, the "/etc/resolv.conf" file stores your domain name and name server ip addresses.

The mktcpip command creates or updates the /etc/resolv.conf file for you.

Starting and stopping NFS:

The following subsystems are part of the nfs group: nfsd, biod, rpc.lockd, rpc.statd, and rpc.mountd.

The nfs subsystem (group) is under control of the "resource controller", so starting and stopping nfs

is actually easy:

startsrc -g nfs

stopsrc -g nfs

inetd daemon:

After you have edited "/etc/inetd.conf", for example, to enable or disable some service,

you need to restart, or refresh inetd, to read the new configuration information.

To let inetd to reread the configfile:

refresh -s inetd

If you need to stop and start inetd, use:

stopsrc -s inetd

startsrc -s inetd

Example of the "mktcpip" command:

The mktcpip command is a quick way to configure an interface.

mktcpip -h starboss -a 10.10.10.5 -m 255.255.255.0 -i en0 \

-n 10.10.10.254 -d abc.xyz.nl -g 10.10.10.254 -s -C -A no

Activating, Deactivating, and Detach a network interface:

It might happen that you want to deactivate an interface. You can then activate it at a later time.

Here, you can use the "ifconfig" command, like:

ifconfig en0 down

ifconfig en0 up

It's also possible to specify network parameters, although smitty is used more often.

ifconfig en0 10.10.10.30 netmask 255.255.255.0 up

When you do not need an interface anymore, you can "detach" it. It will then no longer

be shown in an interface listing, like for example:

ifconfig tr0 detach

The "/etc/hosts.equiv" and the "$HOME/.rhosts" files:

This is a bit old stuff, because in reality it is hardly used anymore because of security risks,

but it might be an exam objective.

The /etc/hosts.equiv file, along with any local $HOME/.rhosts files, defines the

hosts (computers on a network) and user accounts that can invoke remote
commands on a local host without supplying a password. A user or host that is

not required to supply a password is considered trusted.

When a local host receives a remote command request, the appropriate local

daemon first checks the /etc/hosts.equiv file to determine if the request originates

with a trusted user or host. For example, if the local host receives a remote login

request, the rlogind daemon checks for the existence of a hosts.equiv file on the

local host. If the file exists, but does not define the host or user, the system

checks the appropriate $HOME/.rhosts file. This file is similar to the

/etc/hosts.equiv file, except that it is maintained for individual users.

Both files, /etc/hosts.equiv and $HOME/.rhosts, must have permissions denying

write access to group and other (600). If either group or other have write access

to a file, that file will be ignored.

Examples:

In the "/etc/hosts.equiv" file, the following entries could be present:

For example, to allow all the users on the hosts starboss and cygnus to log in to

the local host, you would enter:

starboss

cygnus

But if you only want to allow the user bob to log in from the host cygnus, you would enter:

starboss

cygnus bob

If you want to additionally also allow the user john to log in from any host, you would enter:

starboss

cygnus bob

+ john

Initialization of TCPIP at boot:

At IPL time, the init process will run the /etc/rc.tcpip after starting the SRC.

This is so because in the "/etc/inittab" file, the following record is present:

rctcpip:23456789:wait:/etc/rc.tcpip > /dev/console 2>&1 # Start TCP/IP daemons

The /etc/rc.tcpip file is a shell script that uses SRC commands to initialize selected deamons.

It can also be executed at any time from the command line.

These deamons are:

inetd (started by default),gated,routed,named,timed,rwhod

There are also deamons specific to the bos or to other applications that can be started through

the rc.tcpip file. These deamons are lpd, portmap, sendmail, syslogd (started by default)

The subsystems started from rc.tcpip can be stopped and restarted using the stopsrc and startsrc commands.

The telinit command:

If you want to change the "runlevel" of your machine, you can use the "telinit" command to do so.

For example, maybe you want to run the machine in "single user" or "maintenance mode".

Actually, the "telinit" is linked to the familiar "init", which is used on most other platforms

to reboot or change the runlevel.

{ telinit | init } { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | h | Q | q | S | s | M | m | N }

S,s,M,m: maintenance mode

0,1 : reserved

2 : normal

3-9 : user defined

Q,q : reparse inittab file

AIX is a little bit different from most other unixes, in the sense that here level 2 is the default multi-user level.

The nslookup command:

The nslookup command queries domain name servers for information about

various hosts and domains. The nslookup command is useful for determining

host names of servers by IP address, host name, or

domain. The nslookup command can be run as follows:

nslookup [IPAddress | HostName]

For example, to determine the host name of the system with the IP address of

202.25.200.128, you would enter:

nslookup 202.25.200.128

Server: ns01.antapex.org

Address: 9.3.240.2

Name: lp05.antapex.org

Address: 202.25.200.128

The no command:

The no command is used to configure network attributes. The no commands sets or displays current

network attributes in the kernel. It will only operate on the currently running kernel.

Whether the commands sets or displays an attribute is determined by the accompanying flag:

the -o flag performs both actions.

The syntax is much like the syntax used with the vmo command (see chapter 3).

Some examples of setting tunables:

no -o thewall=3072

no -o tcp_sendspace=16384

no -o ipqmaxlen=512

no -o ipforwarding=1 # Meaning IP forwarding is true.

Most important flags:

-a Displays parameters.

-L [tunable] Displays all tunables, or the one specified with [tunable]

-o Tunable[=new_value] Displays the value or sets the Tunable to new_value.

Adding network routes:

To add static network routes in order for your system to reach remote networks via a router / gateway, you can

use smitty, or the route add command.

smitty route

smitty mkroute

route add -net 192.168.1 -netmask 255.255.255.0 10.10.10.1

Well, that's it. Although this document is rather limited in scope,

I hope it was a bit usefull.

